Blog
About

31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Gold nanoparticles as novel agents for cancer therapy.

      The British Journal of Radiology

      methods, Animals, Contrast Media, administration & dosage, Drug Carriers, Gold, pharmacology, therapeutic use, Humans, Hyperthermia, Induced, Magnetic Resonance Imaging, Metal Nanoparticles, Mice, Models, Biological, Neoplasms, therapy, Plasmids, drug effects, Radiation-Sensitizing Agents, Tomography, X-Ray Computed

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early-phase clinical trials. In particular, the pre-clinical evidence for gold nanoparticles as sensitisers with ionising radiation in vitro and in vivo at kilovoltage and megavoltage energies is discussed.

          Related collections

          Most cited references 77

          • Record: found
          • Abstract: not found
          • Article: not found

          Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toxic potential of materials at the nanolevel.

            Nanomaterials are engineered structures with at least one dimension of 100 nanometers or less. These materials are increasingly being used for commercial purposes such as fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronics, and drug carriers. Materials in this size range may approach the length scale at which some specific physical or chemical interactions with their environment can occur. As a result, their properties differ substantially from those bulk materials of the same composition, allowing them to perform exceptional feats of conductivity, reactivity, and optical sensitivity. Possible undesirable results of these capabilities are harmful interactions with biological systems and the environment, with the potential to generate toxicity. The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.

              We investigated the intracellular uptake of different sized and shaped colloidal gold nanoparticles. We showed that kinetics and saturation concentrations are highly dependent upon the physical dimensions of the nanoparticles (e.g., uptake half-life of 14, 50, and 74 nm nanoparticles is 2.10, 1.90, and 2.24 h, respectively). The findings from this study will have implications in the chemical design of nanostructures for biomedical applications (e.g., tuning intracellular delivery rates and amounts by nanoscale dimensions and engineering complex, multifunctional nanostructures for imaging and therapeutics).
                Bookmark

                Author and article information

                Journal
                22010024
                3473940
                10.1259/bjr/59448833

                Comments

                Comment on this article