11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ATP-dependent Conformational Changes Trigger Substrate Capture and Release by an ECF-type Biotin Transporter.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Energy-coupling factor (ECF) transporters for vitamins and metal ions in prokaryotes consist of two ATP-binding cassette-type ATPases, a substrate-specific transmembrane protein (S component) and a transmembrane protein (T component) that physically interacts with the ATPases and the S component. The mechanism of ECF transporters was analyzed upon reconstitution of a bacterial biotin transporter into phospholipid bilayer nanodiscs. ATPase activity was not stimulated by biotin and was only moderately reduced by vanadate. A non-hydrolyzable ATP analog was a competitive inhibitor. As evidenced by cross-linking of monocysteine variants and by site-specific spin labeling of the Q-helix followed by EPR-based interspin distance analyses, closure and reopening of the ATPase dimer (BioM2) was a consequence of ATP binding and hydrolysis, respectively. A previously suggested role of a stretch of small hydrophobic amino acid residues within the first transmembrane segment of the S units for S unit/T unit interactions was structurally and functionally confirmed for the biotin transporter. Cross-linking of this segment in BioY (S) using homobifunctional thiol-reactive reagents to a coupling helix of BioN (T) indicated a reorientation rather than a disruption of the BioY/BioN interface during catalysis. Fluorescence emission of BioY labeled with an environmentally sensitive fluorophore was compatible with an ATP-induced reorientation and consistent with a hypothesized toppling mechanism. As demonstrated by [(3)H]biotin capture assays, ATP binding stimulated substrate capture by the transporter, and subsequent ATP hydrolysis led to substrate release. Our study represents the first experimental insight into the individual steps during the catalytic cycle of an ECF transporter in a lipid environment.

          Related collections

          Author and article information

          Journal
          J. Biol. Chem.
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          1083-351X
          0021-9258
          Jul 03 2015
          : 290
          : 27
          Affiliations
          [1 ] From the Institut für Biologie/Mikrobiologie and.
          [2 ] the Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
          [3 ] Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany and.
          [4 ] From the Institut für Biologie/Mikrobiologie and thomas.eitinger@cms.hu-berlin.de.
          Article
          M115.654343
          10.1074/jbc.M115.654343
          4505438
          25991724
          62cee290-8891-42d3-b57e-c52bda5f3a34
          History

          ABC transporter,ATP,ECF transporter,biotin,cross-linking,electron paramagnetic resonance (EPR),fluorescence,lipid bilayer nanodiscs,vitamin uptake

          Comments

          Comment on this article