34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sepsis is a severe and life-threatening systemic inflammatory response to infection that affects all populations and age groups. The pathophysiology of sepsis is associated with aberrant interaction between leukocytes and the vascular endothelium. As inflammation progresses, the adhesion molecules that mediate these interactions become shed from cell surfaces and accumulate in the blood as soluble isoforms that are being explored as potential prognostic disease biomarkers. We critically review the studies that have tested the predictive value of soluble adhesion molecules in sepsis pathophysiology with emphasis on age, as well as the underlying mechanisms and potential roles for inflammatory shedding. Five soluble adhesion molecules are associated with sepsis, specifically, E-selectin, L-selectin and P-selectin, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. While increased levels of these soluble adhesion molecules generally correlate well with the presence of sepsis, their degree of elevation is still poorly predictive of sepsis severity scores, outcome and mortality. Separate analyses of neonates, children and adults demonstrate significant age-dependent discrepancies in both basal and septic levels of circulating soluble adhesion molecules. Additionally, a range of both clinical and experimental studies suggests protective roles for adhesion molecule shedding that raise important questions about whether these should positively or negatively correlate with mortality. In conclusion, while predictive properties of soluble adhesion molecules have been researched intensively, their levels are still poorly predictive of sepsis outcome and mortality. We propose two novel directions for improving clinical utility of soluble adhesion molecules: the combined simultaneous analysis of levels of adhesion molecules and their sheddases; and taking age-related discrepancies into account. Further attention to these issues may provide better understanding of sepsis pathophysiology and increase the usefulness of soluble adhesion molecules as diagnostic and predictive biomarkers.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Innate immunity of the newborn: basic mechanisms and clinical correlates.

          Ofer Levy (2007)
          The fetus and newborn face a complex set of immunological demands, including protection against infection, avoidance of harmful inflammatory immune responses that can lead to pre-term delivery, and balancing the transition from a sterile intra-uterine environment to a world that is rich in foreign antigens. These demands shape a distinct neonatal innate immune system that is biased against the production of pro-inflammatory cytokines. This bias renders newborns at risk of infection and impairs responses to many vaccines. This Review describes innate immunity in newborns and discusses how this knowledge might be used to prevent and treat infection in this vulnerable population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis.

            Neutrophil elastase (NE) is a potent serine proteinase whose expression is limited to a narrow window during myeloid development. In neutrophils, NE is stored in azurophil granules along with other serine proteinases (cathepsin G, proteinase 3 and azurocidin) at concentrations exceeding 5 mM. As a result of its capacity to efficiently degrade extracellular matrix, NE has been implicated in a variety of destructive diseases. Indeed, while much interest has focused on the pathologic effects of this enzyme, little is known regarding its normal physiologic function(s). Because previous in vitro data have shown that NE exhibits antibacterial activity, we investigated the role of NE in host defense against bacteria. Generating strains of mice deficient in NE (NE-/-) by targeted mutagenesis, we show that NE-/- mice are more susceptible than their normal littermates to sepsis and death following intraperitoneal infection with Gram negative (Klebsiella pneumoniae and Escherichia coli) but not Gram positive (Staphylococcus aureus) bacteria. Our data indicate that neutrophils migrate normally to sites of infection in the absence of NE, but that NE is required for maximal intracellular killing of Gram negative bacteria by neutrophils.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The association of endothelial cell signaling, severity of illness, and organ dysfunction in sepsis

              Introduction Previous reports suggest that endothelial activation is an important process in sepsis pathogenesis. We investigated the association between biomarkers of endothelial cell activation and sepsis severity, organ dysfunction sequential organ failure assessment (SOFA) score, and death. Methods This is a prospective, observational study including adult patients (age 18 years or older) presenting with clinical suspicion of infection to the emergency department (ED) of an urban, academic medical center between February 2005 and November 2008. Blood was sampled during the ED visit and biomarkers of endothelial cell activation, namely soluble fms-like tyrosine kinase-1 (sFlt-1), plasminogen activator inhibitors -1 (PAI-1), sE-selectin, soluble intercellular adhesion molecule (sICAM-1), and soluble vascular cell adhesion molecule (sVCAM-1), were assayed. The association between biomarkers and the outcomes of sepsis severity, organ dysfunction, and in-hospital mortality were analyzed. Results A total of 221 patients were included: sepsis without organ dysfunction was present in 32%, severe sepsis without shock in 30%, septic shock in 32%, and 6% were non-infected control ED patients. There was a relationship between all target biomarkers (sFlt-1, PAI-1, sE-selectin, sICAM-1, and sVCAM-1) and sepsis severity, P < 0.05. We found a significant inter-correlation between all biomarkers, including the strongest correlations between sFlt-1 and sE-selectin (r = 0.55, P < 0.001), and between sFlt-1 and PAI-1 (0.56, P < 0.001). Among the endothelial cell activation biomarkers, sFlt-1 had the strongest association with SOFA score (r = 0.66, P < 0.001), the highest area under the receiver operator characteristic curve for severe sepsis of 0.82, and for mortality of 0.91. Conclusions Markers of endothelial cell activation are associated with sepsis severity, organ dysfunction and mortality. An improved understanding of endothelial response and associated biomarkers may lead to strategies to more accurately predict outcome and develop novel endothelium-directed therapies in sepsis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Crit Care
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2014
                18 February 2014
                : 18
                : 1
                : 204
                Affiliations
                [1 ]Department of Pediatrics, Tergooi Hospitals, Blaricum, Postal Box 10016, Hilversum 1201 DA, The Netherlands
                [2 ]Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 330 Brookline Avenue, RN-234, Boston, MA 02215, USA
                [3 ]Department of Pediatric Hematology, Immunology and Infectious Disease, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
                [4 ]Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 330 Brookline Avenue, RN-234, Boston, MA 02215, USA
                Article
                cc13733
                10.1186/cc13733
                4014977
                24602331
                62d8ed4e-b6fd-420f-b465-b91cb891c33c
                Copyright © 2014 BioMed Central Ltd.
                History
                Categories
                Review

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article