19
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Topical anesthesia therapy using lidocaine-loaded nanostructured lipid carriers: tocopheryl polyethylene glycol 1000 succinate-modified transdermal delivery system

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Transdermal drug delivery of local anesthetics using lipid nanoparticles could enhance lipophilic drugs permeation through the stratum corneum, improve drug diffusion to deeper skin, and exert good therapeutic effects. The purpose of this study was to engineer a Tocopheryl Polyethylene Glycol 1000 Succinate (TPGS)-modified cationic nanostructured lipid carriers (NLC) for the delivery of lidocaine (LID; TPGS/LID-NLC).

          Materials and methods

          TPGS/LID-NLC was prepared by solvent diffusion method. The particle size, polydispersity index, zeta potential, drug entrapment efficiency, drug loading, stability, drug release, and cytotoxicity were tested to evaluate the basic characters of NLC. In vitro skin permeation and in vivo anesthesia effect in an animal model were further investigated to determine the therapeutic efficiency of the system.

          Results

          TPGS/LID-NLC had a particle size of 167.6±4.3 nm, a zeta potential of +21.2±2.3 mV, an entrapment efficiency of 85.9%±3.1%, and a drug loading of 11.5%±0.9%. A sustained release pattern was achieved by TPGS/LID-NLC, with 81.2% of LID released at 72 hours. In vitro permeation study showed that the steady-state fluxes (J ss), permeability coefficient (Kp), and cumulative drug permeation Q n at 72 hours (Q 72) of TPGS/LID-NLC were 15.6±1.8 µg/cm 2/hour, 10.3±0.9 cm/hour (×10 −3), and 547.5±23.6 µg/cm 2, respectively, which were significantly higher than the nonmodified NLC and free drug groups. In vivo anesthesia effect of TPGS/LID-NLC was the most remarkable and long acting among the formulations tested, which could be concluded by the most considerable maximum possible effect from 10 to 120 minutes during the whole research.

          Conclusion

          The most prominent in vitro permeation efficiency and in vivo anesthetic effect of TPGS/LID-NLC could be the evidence that TPGS-modified NLC could function as a promising drug delivery system for prolonged and efficient local anesthetic therapy.

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Vitamin E TPGS as a molecular biomaterial for drug delivery.

          D-α-tocopheryl polyethylene glycol succinate (Vitamin E TPGS, or simply TPGS) is a water-soluble derivative of natural Vitamin E, which is formed by esterification of Vitamin E succinate with polyethylene glycol (PEG). As such, it has advantages of PEG and Vitamin E in application of various nanocarriers for drug delivery, including extending the half-life of the drug in plasma and enhancing the cellular uptake of the drug. TPGS has an amphiphilic structure of lipophilic alkyl tail and hydrophilic polar head with a hydrophile/lipophile balance (HLB) value of 13.2 and a relatively low critical micelle concentration (CMC) of 0.02% w/w, which make it to be an ideal molecular biomaterial in developing various drug delivery systems, including prodrugs, micelles, liposomes and nanoparticles, which would be able to realize sustained, controlled and targeted drug delivery as well as to overcome multidrug resistance (MDR) and to promote oral drug delivery as an inhibitor of P-glycoprotein (P-gp). In this review, we briefly discuss its physicochemical and pharmaceutical properties and its wide applications in composition of the various nanocarriers for drug delivery, which we call TPGS-based drug delivery systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models.

            The assessment of percutaneous permeation of molecules is one of the main steps in the initial design and later in the evaluation of dermal or transdermal drug delivery systems. The literature reports numerous ex vivo, in vitro and in vivo models used to determine drug skin permeation profiles and kinetic parameters, some studies focusing on the correlation of the data obtained using these models with the dermal/transdermal absorption in humans. This paper reviews work from in vitro permeation studies to clinical performance, presenting various experimental models used in dermal/transdermal research, including the use of excised human or animal skin, cultured skin equivalents and animals. Studies focusing on transdermal absorption of a series of drug molecules and various delivery systems as well as mathematical models for skin absorption are reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters.

              The aim of this work was to develop an advanced theranostic micelles of D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS), which are conjugated with transferrin for targeted co-delivery of docetaxel (DTX) as a model drug and ultra bright gold clusters (AuNC) as a model imaging agent for simultaneous cancer imaging and therapy. The theranostic micelles with and without transferrin conjugation were prepared by the solvent casting method and characterized for their particle size, polydispersity, surface chemistry, drug encapsulation efficiency, drug loading and cellular uptake efficiency. Transferrin receptors expressing MDA-MB-231-luc breast cancer cells and NIH-3T3 fibroblast cells (control cells without transferrin receptor expression) were employed as an in vitro model to access cytotoxicity of the formulations. The overexpression of transferrin receptor on the surface of MDA-MB-231-luc cells was confirmed by flow cytometry. The biodistribution study and theranostic efficacy of the micelles were investigated by using the Xenogen IVIS(®) Spectrum imaging system, which includes AuNC based fluorescence imaging and luciferase induced bioluminescence imaging on MDA-MB-231-luc tumor bearing SCID mice. The IC50 values demonstrated that the non-targeted and targeted micelles could be 15.31 and 71.73 folds more effective than Taxotere(®) after 24 h treatment with the MDA-MB-231-luc cells. Transferrin receptor targeted delivery of such micelles was imaged in xenograft model and showed their great advantages for real-time tumor imaging and inhibition of tumor growth.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2018
                13 December 2018
                : 12
                : 4231-4240
                Affiliations
                Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, People’s Republic of China, sunyingjnmu@ 123456163.com
                Author notes
                Correspondence: Ying Sun, Department of Anesthesiology, Affiliated Hospital of Jining Medical University, No 89 Guhuai Road, Jining, Shandong Province 272000, People’s Republic of China, Tel +86 0537 290 3019, Email sunyingjnmu@ 123456163.com
                Article
                dddt-12-4231
                10.2147/DDDT.S187177
                6296185
                62e44890-2564-49de-9a5c-f3ac7b1cbc91
                © 2018 Zhao et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                local anesthetics,transdermal delivery,tocopheryl succinate,nanostructured lipid carriers,lidocaine

                Comments

                Comment on this article