37
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Profile of tivozanib and its potential for the treatment of advanced renal cell carcinoma

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tivozanib is a novel vascular endothelial growth factor receptor tyrosine kinase inhibitor (VEGF TKI). Among other VEGF TKIs, tivozanib stands apart due to its selective kinase inhibitory properties as well as its high potency for inhibiting VEGF receptors 1 and 2. Tivozanib has been evaluated in several clinical trials including a Phase I and Phase II trial demonstrating safety and efficacy for patients with advanced clear cell renal cell carcinoma (RCC). A pivotal randomized Phase III trial comparing the front-line use of tivozanib to sorafenib in patients with metastatic clear cell RCC has been reported. The clinical development of tivozanib and results of these important studies will be reviewed. Also, the potential placement of tivozanib among currently US Food and Drug Administration approved agents for advanced RCC will be discussed.

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found

          VEGF as a Key Mediator of Angiogenesis in Cancer

          Vascular endothelial growth factor (VEGF) is a homodimeric glycoprotein with a molecular weight of approximately 45 kDa. It is the key mediator of angiogenesis (the formation of new blood vessels), and binds two VEGF receptors (VEGF receptor-1 and VEGF receptor-2), which are expressed on vascular endothelial cells. In healthy humans, VEGF promotes angiogenesis in embryonic development and is important in wound healing in adults. VEGF is the key mediator of angiogenesis in cancer, in which it is up-regulated by oncogene expression, a variety of growth factors and also hypoxia. Angiogenesis is essential for cancer development and growth: before a tumor can grow beyond 1–2 mm, it requires blood vessels for nutrients and oxygen. The production of VEGF and other growth factors by the tumor results in the ‘angiogenic switch’, where new vasculature is formed in and around the tumor, allowing it to grow exponentially. Tumor vasculature formed under the influence of VEGF is structurally and functionally abnormal. Blood vessels are irregularly shaped, tortuous, have dead ends and are not organized into venules, arterioles and capillaries. They are also leaky and hemorrhagic, which leads to high interstitial pressure. These characteristics mean that tumor blood flow is suboptimal, resulting in hypoxia and further VEGF production. This central role of VEGF in the production of tumor vasculature makes it a rational target for anticancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations of the VHL tumour suppressor gene in renal carcinoma.

            Multiple, bilateral renal carcinomas are a frequent occurrence in von Hippel-Lindau (VHL) disease. To elucidate the aetiological role of the VHL gene in human kidney tumorigenesis, localized and advanced tumours from 110 patients with sporadic renal carcinoma were analysed for VHL mutations and loss of heterozygosity (LOH). VHL mutations were identified in 57% of clear cell renal carcinomas analysed and LOH was observed in 98% of those samples. Moreover, VHL was mutated and lost in a renal tumour from a patient with familial renal carcinoma carrying the constitutional translocation, t(3;8)(p14;q24). The identification of VHL mutations in a majority of localized and advanced sporadic renal carcinomas and in a second form of hereditary renal carcinoma indicates that the VHL gene plays a critical part in the origin of this malignancy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of VHL gene mutation in human cancer.

              Germline inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene causes the von Hippel-Lindau hereditary cancer syndrome, and somatic mutations of this gene have been linked to the development of sporadic hemangioblastomas and clear-cell renal carcinomas. The VHL tumor suppressor protein (pVHL), through its oxygen-dependent polyubiquitylation of hypoxia-inducible factor (HIF), plays a central role in the mammalian oxygen-sensing pathway. This interaction between pVHL and HIF is governed by post-translational prolyl hydroxylation of HIF in the presence of oxygen by a conserved family of Egl-nine (EGLN) enzymes. In the absence of pVHL, HIF becomes stabilized and is free to induce the expression of its target genes, many of which are important in regulating angiogenesis, cell growth, or cell survival. Moreover, preliminary data indicate that HIF plays a critical role in pVHL-defective tumor formation, raising the possibility that drugs directed against HIF or its downstream targets (such as vascular endothelial growth factor) might one day play a role in the treatment of hemangioblastoma and renal cell carcinoma. On the other hand, clear genotype-phenotype correlations are emerging in VHL disease and can be rationalized if pVHL has functions separate from its control of HIF.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2013
                21 June 2013
                : 7
                : 519-527
                Affiliations
                Baylor-Sammons Cancer Center, Texas Oncology, PA, US Oncology Research, Dallas, TX, USA
                Author notes
                Correspondence: C Lance Cowey Baylor-Sammons Cancer Center, Texas Oncology, PA, US Oncology Research, 3410 Worth Street, Ste 300, Dallas, TX 75246, USA, Email lance.cowey@ 123456usoncology.com
                Article
                dddt-7-519
                10.2147/DDDT.S31442
                3693745
                23818763
                62e58d11-7670-45a1-94e3-8c3337c978d1
                © 2013 Cowey, publisher and licensee Dove Medical Press Ltd

                This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

                History
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                tivozanib,av-951,metastatic renal cell carcinoma,rcc,vegf inhibitor,targeted therapy,angiogenesis inhibitor

                Comments

                Comment on this article