22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of quality by design approach to optimize process and formulation parameters of rizatriptan loaded chitosan nanoparticles

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of present study was to optimize rizatriptan (RZT) chitosan (CS) nanoparticles using ionic gelation method by application of quality by design (QbD) approach. Based on risk assessment, effect of three variables, that is CS %, tripolyphosphate % and stirring speed were studied on critical quality attributes (CQAs); particle size and entrapment efficiency. Central composite design (CCD) was implemented for design of experimentation with 20 runs. RZT CS nanoparticles were characterized for particle size, polydispersity index, entrapment efficiency, in-vitro release study, differential scanning calorimetric, X-ray diffraction, scanning electron microscopy (SEM). Based on QbD approach, design space (DS) was optimized with a combination of selected variables with entrapment efficiency > 50% w/w and a particle size between 400 and 600 nm. Validation of model was performed with 3 representative formulations from DS for which standard error of − 0.70–3.29 was observed between experimental and predicted values. In-vitro drug release followed initial burst release 20.26 ± 2.34% in 3–4 h with sustained drug release of 98.43 ± 2.45% in 60 h. Lower magnitude of standard error for CQAs confirms the validation of selected CCD model for optimization of RZT CS nanoparticles. In-vitro drug release followed dual mechanism via, diffusion and polymer erosion. RZT CS nanoparticles were prepared successfully using QbD approach with the understanding of the high risk process and formulation parameters involved and optimized DS with a multifactorial combination of critical parameters to obtain predetermined RZT loaded CS nanoparticle specifications.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles.

          Chitosan nanoparticles (CS NP) with various formations were produced based on ionic gelation process of tripolyphosphate (TPP) and chitosan. They were examined with diameter 20-200 nm and spherical shape using TEM. FTIR confirmed tripolyphosphoric groups of TPP linked with ammonium groups of chitosan in the nanoparticles. Factors affecting delivery properties of bovine serum albumin (BSA) as model protein have been tested, they included molecular weight (Mw) and deacetylation degree (DD) of chitosan, the concentration of chitosan and initial BSA, and the presence of polyethylene glycol (PEG) in encapsulation medium. Increasing Mws of chitosan from 10 to 210 kDa, BSA encapsulation efficiency was enhanced about two times, BSA total release in PBS (phosphate buffer saline) pH 7.4 in 8 days was reduced from 73.9 to 17.6%. Increasing DD from 75.5 to 92% promoted slightly the encapsulation efficiency and decelerated the release rate. The encapsulation efficiency was highly decreased by increase of initial BSA and chitosan concentration; higher loading capacity of BSA speeded the BSA release from the nanoparticles. Adding PEG hindered the BSA encapsulation and accelerated the release rate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate.

            The ammonium glycyrrhizinate-loaded chitosan nanoparticles were prepared by ionic gelation of chitosan with tripolyphosphate anions (TPP). The particle size and zeta potential of nanoparticles were determined, respectively, by dynamic light scattering (DLS) and a zeta potential analyzer. The effects, including chitosan molecular weight, chitosan concentration, ammonium glycyrrhizinate concentration and polyethylene glycol (PEG) on the physicochemical properties of the nanoparticles were studied. These nanoparticles have ammonium glycyrrhizinate loading efficiency. The encapsulation efficiency decreased with the increase of ammonium glycyrrhizinate concentration and chitosan concentration. The introduction of PEG can decrease significantly the positive charge of particle surface. These studies showed that chitosan can complex TPP to form stable cationic nanoparticles for subsequent ammonium glycyrrhizinate loading.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chitosan-based nanoparticles for improving immunization against hepatitis B infection.

              The design of effective vaccine delivery vehicles is opening up new possibilities for making immunization more equitable, safe and efficient. In this work, we purpose polysaccharidic-based nanoparticles as delivery structures for virus-like particle antigens, using recombinant hepatitis B surface antigen (rHBsAg) as a model. Polysaccharidic-based nanoparticles were prepared using a very mild ionic gelation technique, by cross-linking the polysaccharide chitosan (CS) with a counter ion. The resulting nanoparticles could be easily isolated with a size in the nanometric range (160-200 nm) and positive surface charge (+6 to +10 mV). More importantly, CS-based nanoparticles allowed the efficient association of the antigen (>60%) while maintaining the antigenic epitope intact, as determined by ELISA and Western blot. The entrapped antigen was further released in vitro from the nanoparticles in a sustained manner without compromising its antigenicity. In addition, loaded CS-based nanoparticles were stable, and protected the associated antigen during storage, either as an aqueous suspension under different temperature conditions (+4 degrees C and -20 degrees C), or as a dried form after freeze-drying the nanoparticles. Finally, immunization studies showed the induction of important seroprotection rates after intramuscular administration of the nanoparticles, indicating their adjuvant capacity. In fact, CS-based nanoparticles were able to induce anti-HBsAg IgG levels up to 5500 mIU/ml, values 9-fold the conventional alum-adsorbed vaccine. In conclusion, we report here a polysaccharidic nanocarrier which exhibits a number of in vitro and in vivo features that make it a promising adjuvant for vaccine delivery of subunit antigens.
                Bookmark

                Author and article information

                Journal
                J Adv Pharm Technol Res
                J Adv Pharm Technol Res
                JAPTR
                Journal of Advanced Pharmaceutical Technology & Research
                Medknow Publications & Media Pvt Ltd (India )
                2231-4040
                0976-2094
                Jul-Sep 2015
                : 6
                : 3
                : 88-96
                Affiliations
                [1]Department of Pharmacy, JJTU, Rajasthan, India
                [1 ]Department of Quality Assurance, Padm. Dr. D. Y. Patil Institute of Pharmaceutical Science and Research, Pimpri, Pune, Maharashtra, India
                Author notes
                Address for correspondence: Ajinath Eknath Shirsat, Department of Pharmacy, JJT University, Jhunjhunu, Rajasthan - 333 001, India. E-mail: adinath84@ 123456gmail.com
                Article
                JAPTR-6-88
                10.4103/2231-4040.157983
                4542404
                62f08a9e-5496-4b08-b725-3d251a5a1485
                Copyright: © Journal of Advanced Pharmaceutical Technology & Research

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Original Article

                Pharmacology & Pharmaceutical medicine
                central composite design,chitosan,design space,ionic gelation,quality by design,rizatriptan

                Comments

                Comment on this article