25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterizing PFAS hazards and risks: a human population-based in vitro cardiotoxicity assessment strategy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants of concern because of their wide use, persistence, and potential to be hazardous to both humans and the environment. Several PFAS have been designated as substances of concern; however, most PFAS in commerce lack toxicology and exposure data to evaluate their potential hazards and risks. Cardiotoxicity has been identified as a likely human health concern, and cell-based assays are the most sensible approach for screening and prioritization of PFAS. Human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a widely used method to test for cardiotoxicity, and recent studies showed that many PFAS affect these cells. Because iPSC-derived cardiomyocytes are available from different donors, they also can be used to quantify human variability in responses to PFAS. The primary objective of this study was to characterize potential human cardiotoxic hazard, risk, and inter-individual variability in responses to PFAS. A total of 56 PFAS from different subclasses were tested in concentration-response using human iPSC-derived cardiomyocytes from 16 donors without known heart disease. Kinetic calcium flux and high-content imaging were used to evaluate biologically-relevant phenotypes such as beat frequency, repolarization, and cytotoxicity. Of the tested PFAS, 46 showed concentration-response effects in at least one phenotype and donor; however, a wide range of sensitivities were observed across donors. Inter-individual variability in the effects could be quantified for 19 PFAS, and risk characterization could be performed for 20 PFAS based on available exposure information. For most tested PFAS, toxicodynamic variability was within a factor of 10 and the margins of exposure were above 100. This study identified PFAS that may pose cardiotoxicity risk and have high inter-individual variability. It also demonstrated the feasibility of using a population-based human in vitro method to quantify population variability and identify cardiotoxicity risks of emerging contaminants.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s40246-024-00665-x.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            • Record: found
            • Abstract: not found
            • Article: not found

            Inference from Iterative Simulation Using Multiple Sequences

              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins

              The primary aim of this article is to provide an overview of perfluoroalkyl and polyfluoroalkyl substances (PFASs) detected in the environment, wildlife, and humans, and recommend clear, specific, and descriptive terminology, names, and acronyms for PFASs. The overarching objective is to unify and harmonize communication on PFASs by offering terminology for use by the global scientific, regulatory, and industrial communities. A particular emphasis is placed on long-chain perfluoroalkyl acids, substances related to the long-chain perfluoroalkyl acids, and substances intended as alternatives to the use of the long-chain perfluoroalkyl acids or their precursors. First, we define PFASs, classify them into various families, and recommend a pragmatic set of common names and acronyms for both the families and their individual members. Terminology related to fluorinated polymers is an important aspect of our classification. Second, we provide a brief description of the 2 main production processes, electrochemical fluorination and telomerization, used for introducing perfluoroalkyl moieties into organic compounds, and we specify the types of byproducts (isomers and homologues) likely to arise in these processes. Third, we show how the principal families of PFASs are interrelated as industrial, environmental, or metabolic precursors or transformation products of one another. We pay particular attention to those PFASs that have the potential to be converted, by abiotic or biotic environmental processes or by human metabolism, into long-chain perfluoroalkyl carboxylic or sulfonic acids, which are currently the focus of regulatory action. The Supplemental Data lists 42 families and subfamilies of PFASs and 268 selected individual compounds, providing recommended names and acronyms, and structural formulas, as well as Chemical Abstracts Service registry numbers. Integr Environ Assess Manag 2011;7:513–541. © 2011 SETAC

                Author and article information

                Contributors
                irusyn@tamu.edu
                Journal
                Hum Genomics
                Hum Genomics
                Human Genomics
                BioMed Central (London )
                1473-9542
                1479-7364
                2 September 2024
                2 September 2024
                2024
                : 18
                : 92
                Affiliations
                [1 ]Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, ( https://ror.org/01f5ytq51) College Station, TX 77843-4466 USA
                [2 ]Department of Biological Sciences and Statistics, North Carolina State University, ( https://ror.org/04tj63d06) Raleigh, NC 27695 USA
                [3 ]Bioinformatics Research Center, North Carolina State University, ( https://ror.org/04tj63d06) Raleigh, NC 27695 USA
                [4 ]Sciome LLC, Durham, NC 27713 USA
                Article
                665
                10.1186/s40246-024-00665-x
                11368000
                39218963
                62f274cc-e1b2-4497-81b9-aad44b64fb67
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 May 2024
                : 20 August 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000066, National Institute of Environmental Health Sciences;
                Award ID: P42 ES027704
                Funded by: FundRef http://dx.doi.org/10.13039/100000139, U.S. Environmental Protection Agency;
                Award ID: STAR RD83580201
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Genetics
                Genetics

                Comments

                Comment on this article

                Related Documents Log