69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of Dystrophin Deficient Rats: A New Model for Duchenne Muscular Dystrophy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx ( X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats ( Dmd mdx ) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmd mdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmd mdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmd mdx rats represent a new faithful small animal model of DMD.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          A TALE nuclease architecture for efficient genome editing.

          Nucleases that cleave unique genomic sequences in living cells can be used for targeted gene editing and mutagenesis. Here we develop a strategy for generating such reagents based on transcription activator-like effector (TALE) proteins from Xanthomonas. We identify TALE truncation variants that efficiently cleave DNA when linked to the catalytic domain of FokI and use these nucleases to generate discrete edits or small deletions within endogenous human NTF3 and CCR5 genes at efficiencies of up to 25%. We further show that designed TALEs can regulate endogenous mammalian genes. These studies demonstrate the effective application of designed TALE transcription factors and nucleases for the targeted regulation and modification of endogenous genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Knockout rats via embryo microinjection of zinc-finger nucleases.

            The toolbox of rat genetics currently lacks the ability to introduce site-directed, heritable mutations into the genome to create knockout animals. By using engineered zinc-finger nucleases (ZFNs) designed to target an integrated reporter and two endogenous rat genes, Immunoglobulin M (IgM) and Rab38, we demonstrate that a single injection of DNA or messenger RNA encoding ZFNs into the one-cell rat embryo leads to a high frequency of animals carrying 25 to 100% disruption at the target locus. These mutations are faithfully and efficiently transmitted through the germline. Our data demonstrate the feasibility of targeted gene disruption in multiple rat strains within 4 months time, paving the way to a humanized monoclonal antibody platform and additional human disease models.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Heritable gene targeting in the mouse and rat using a CRISPR-Cas system.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                13 October 2014
                : 9
                : 10
                : e110371
                Affiliations
                [1 ]INRA, UMR703 APEX, Oniris, Atlantic Gene Therapies, Université de Nantes, Oniris, École nationale vétérinaire, agro-alimentaire et de l'alimentation, Nantes, France
                [2 ]INSERM, UMR 1087/CNRS 6291 Institut du Thorax, Université de Nantes, Faculté des Sciences et des Techniques, Nantes, France
                [3 ]INSERM, UMR 1064-Center for Research in Transplantation and Immunology, ITUN, CHU Nantes, Université de Nantes, Faculté de Médecine, Nantes, France
                [4 ]INSERM, UMR 1089, Atlantic Gene Therapies, Thérapie génique pour les maladies de la rétine et les maladies neuromusculaires, Université de Nantes, Faculté de Médecine, Nantes, France
                [5 ]Genethon, Evry, France
                [6 ]INSERM, U1154, CNRS, UMR 7196, Muséum National d’Histoire Naturelle, Paris, France
                University of Minnesota Medical School, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: YC CG JPC IA CH. Performed the experiments: TL AL LT SR VT VF CLG HG MD LG GT ADC CB JBR YC CG JPC IA CH. Analyzed the data: TL AL LT SR VT VF CLG HG MD LG GT ADC CB JBR YC CG JPC IA CH. Contributed to the writing of the manuscript: IA CH.

                ¶ These authors are first authors on this work.

                † Deceased

                Article
                PONE-D-14-34606
                10.1371/journal.pone.0110371
                4195719
                25310701
                62f83461-a74b-4a2c-8d06-997c3d8a1d78
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 August 2014
                : 11 September 2014
                Page count
                Pages: 13
                Funding
                Funding was provided by Région Pays de la Loire through Biogenouest, IBiSA program, Fondation Progreffe and TEFOR (Infrastructures d’Avenir of the French goverment), and the integrative genomic facility of Nantes for sequencing experiments. The authors thank the Wolfson Centre for Inherited Neuromuscular Disease for kindly supplying dystrophin monoclonal antibody. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biotechnology
                Cell Biology
                Genetics
                Molecular Biology
                Physiology
                Medicine and Health Sciences
                Congenital Disorders
                Neurology
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article