343
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The creatine kinase system and pleiotropic effects of creatine

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.

          Related collections

          Most cited references192

          • Record: found
          • Abstract: found
          • Article: not found

          Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia.

          The oldest direct evidence of stone tool manufacture comes from Gona (Ethiopia) and dates to between 2.6 and 2.5 million years (Myr) ago. At the nearby Bouri site several cut-marked bones also show stone tool use approximately 2.5 Myr ago. Here we report stone-tool-inflicted marks on bones found during recent survey work in Dikika, Ethiopia, a research area close to Gona and Bouri. On the basis of low-power microscopic and environmental scanning electron microscope observations, these bones show unambiguous stone-tool cut marks for flesh removal and percussion marks for marrow access. The bones derive from the Sidi Hakoma Member of the Hadar Formation. Established (40)Ar-(39)Ar dates on the tuffs that bracket this member constrain the finds to between 3.42 and 3.24 Myr ago, and stratigraphic scaling between these units and other geological evidence indicate that they are older than 3.39 Myr ago. Our discovery extends by approximately 800,000 years the antiquity of stone tools and of stone-tool-assisted consumption of ungulates by hominins; furthermore, this behaviour can now be attributed to Australopithecus afarensis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation.

            1. The present study was undertaken to test whether creatine given as a supplement to normal subjects was absorbed, and if continued resulted in an increase in the total creatine pool in muscle. An additional effect of exercise upon uptake into muscle was also investigated. 2. Low doses (1g of creatine monohydrate or less in water) produced only a modest rise in the plasma creatine concentration, whereas 5g resulted in a mean peak after 1h of 795 (SD 104) mumol/l in three subjects weighing 76-87 kg. Repeated dosing with 5g every 2h sustained the plasma concentration at around 1000 mumol/l. A single 5g dose corresponds to the creatine content of 1.1 kg of fresh, uncooked steak. 3. Supplementation with 5g of creatine monohydrate, four or six times a day for 2 or more days resulted in a significant increase in the total creatine content of the quadriceps femoris muscle measured in 17 subjects. This was greatest in subjects with a low initial total creatine content and the effect was to raise the content in these subjects closer to the upper limit of the normal range. In some the increase was as much as 50%. 4. Uptake into muscle was greatest during the first 2 days of supplementation accounting for 32% of the dose administered in three subjects receiving 6 x 5g of creatine monohydrate/day. In these subjects renal excretion was 40, 61 and 68% of the creatine dose over the first 3 days. Approximately 20% or more of the creatine taken up was measured as phosphocreatine. No changes were apparent in the muscle ATP content.(ABSTRACT TRUNCATED AT 250 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functions and effects of creatine in the central nervous system.

              Creatine kinase catalyses the reversible transphosphorylation of creatine by ATP. In the cell, creatine kinase isoenzymes are specifically localized at strategic sites of ATP consumption to efficiently regenerate ATP in situ via phosphocreatine or at sites of ATP generation to build-up a phosphocreatine pool. Accordingly, the creatine kinase/phosphocreatine system plays a key role in cellular energy buffering and energy transport, particularly in cells with high and fluctuating energy requirements like neurons. Creatine kinases are expressed in the adult and developing human brain and spinal cord, suggesting that the creatine kinase/phosphocreatine system plays a significant role in the central nervous system. Functional impairment of this system leads to a deterioration in energy metabolism, which is phenotypic for many neurodegenerative and age-related diseases. Exogenous creatine supplementation has been shown to reduce neuronal cell loss in experimental paradigms of acute and chronic neurological diseases. In line with these findings, first clinical trials have shown beneficial effects of therapeutic creatine supplementation. Furthermore, creatine was reported to promote differentiation of neuronal precursor cells that might be of importance for improving neuronal cell replacement strategies. Based on these observations there is growing interest on the effects and functions of this compound in the central nervous system. This review gives a short excursion into the basics of the creatine kinase/phosphocreatine system and aims at summarizing findings and concepts on the role of creatine kinase and creatine in the central nervous system with special emphasis on pathological conditions and the positive effects of creatine supplementation.
                Bookmark

                Author and article information

                Contributors
                +41-44-7407047 , +41-44-7413008 , theo.wallimann@cell.biol.ethz.ch
                +33-476-514671 , +33-476-514218 , malgorzata.tokarska-schlattner@ujf-grenoble.fr
                +33-476-514671 , +33-476-514218 , uwe.schlattner@ujf-grenoble.fr
                Journal
                Amino Acids
                Amino Acids
                Springer Vienna (Vienna )
                0939-4451
                1438-2199
                30 March 2011
                30 March 2011
                May 2011
                : 40
                : 5
                : 1271-1296
                Affiliations
                [1 ]Institute of Cell Biology, ETH Zurich, Zurich, Switzerland
                [2 ]INSERM U1055 and University Joseph Fourier Grenoble 1, Laboratory of Fundamental and Applied Bioenergetics, BP 53, 38041 Grenoble cedex 9, France
                [3 ]Schürmattstrasse 23, 8962 Bergdietikon, AG Switzerland
                Article
                877
                10.1007/s00726-011-0877-3
                3080659
                21448658
                62f98373-8b60-436a-a4ae-009c05071953
                © The Author(s) 2011
                History
                : 10 July 2010
                : 2 December 2010
                Categories
                Invited Review
                Custom metadata
                © Springer-Verlag 2011

                Genetics
                beneficial effects of creatine supplementation,microcompartments,creatine kinase isoforms

                Comments

                Comment on this article