101
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association of Lifecourse Socioeconomic Status with Chronic Inflammation and Type 2 Diabetes Risk: The Whitehall II Prospective Cohort Study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Silvia Stringhini and colleagues followed a group of British civil servants over 18 years to look for links between socioeconomic status and health.

          Please see later in the article for the Editors' Summary

          Abstract

          Background

          Socioeconomic adversity in early life has been hypothesized to “program” a vulnerable phenotype with exaggerated inflammatory responses, so increasing the risk of developing type 2 diabetes in adulthood. The aim of this study is to test this hypothesis by assessing the extent to which the association between lifecourse socioeconomic status and type 2 diabetes incidence is explained by chronic inflammation.

          Methods and Findings

          We use data from the British Whitehall II study, a prospective occupational cohort of adults established in 1985. The inflammatory markers C-reactive protein and interleukin-6 were measured repeatedly and type 2 diabetes incidence (new cases) was monitored over an 18-year follow-up (from 1991–1993 until 2007–2009). Our analytical sample consisted of 6,387 non-diabetic participants (1,818 women), of whom 731 (207 women) developed type 2 diabetes over the follow-up. Cumulative exposure to low socioeconomic status from childhood to middle age was associated with an increased risk of developing type 2 diabetes in adulthood (hazard ratio [HR] = 1.96, 95% confidence interval: 1.48–2.58 for low cumulative lifecourse socioeconomic score and HR = 1.55, 95% confidence interval: 1.26–1.91 for low-low socioeconomic trajectory). 25% of the excess risk associated with cumulative socioeconomic adversity across the lifecourse and 32% of the excess risk associated with low-low socioeconomic trajectory was attributable to chronically elevated inflammation (95% confidence intervals 16%–58%).

          Conclusions

          In the present study, chronic inflammation explained a substantial part of the association between lifecourse socioeconomic disadvantage and type 2 diabetes. Further studies should be performed to confirm these findings in population-based samples, as the Whitehall II cohort is not representative of the general population, and to examine the extent to which social inequalities attributable to chronic inflammation are reversible.

          Please see later in the article for the Editors' Summary

          Editors' Summary

          Background

          Worldwide, more than 350 million people have diabetes, a metabolic disorder characterized by high amounts of glucose (sugar) in the blood. Blood sugar levels are normally controlled by insulin, a hormone released by the pancreas after meals (digestion of food produces glucose). In people with type 2 diabetes (the commonest form of diabetes) blood sugar control fails because the fat and muscle cells that normally respond to insulin by removing sugar from the blood become insulin resistant. Type 2 diabetes, which was previously called adult-onset diabetes, can be controlled with diet and exercise, and with drugs that help the pancreas make more insulin or that make cells more sensitive to insulin. However, as the disease progresses, the pancreatic beta cells, which make insulin, become impaired and patients may eventually need insulin injections. Long-term complications, which include an increased risk of heart disease and stroke, reduce the life expectancy of people with diabetes by about 10 years compared to people without diabetes.

          Why Was This Study Done?

          Socioeconomic adversity in childhood seems to increase the risk of developing type 2 diabetes but why? One possibility is that chronic inflammation mediates the association between socioeconomic adversity and type 2 diabetes. Inflammation, which is the body's normal response to injury and disease, affects insulin signaling and increases beta-cell death, and markers of inflammation such as raised blood levels of C-reactive protein and interleukin 6 are associated with future diabetes risk. Notably, socioeconomic adversity in early life leads to exaggerated inflammatory responses later in life and people exposed to social adversity in adulthood show greater levels of inflammation than people with a higher socioeconomic status. In this prospective cohort study (an investigation that records the baseline characteristics of a group of people and then follows them to see who develops specific conditions), the researchers test the hypothesis that chronically increased inflammatory activity in individuals exposed to socioeconomic adversity over their lifetime may partly mediate the association between socioeconomic status over the lifecourse and future type 2 diabetes risk.

          What Did the Researchers Do and Find?

          To assess the extent to which chronic inflammation explains the association between lifecourse socioeconomic status and type 2 diabetes incidence (new cases), the researchers used data from the Whitehall II study, a prospective occupational cohort study initiated in 1985 to investigate the mechanisms underlying previously observed socioeconomic inequalities in disease. Whitehall II enrolled more than 10,000 London-based government employees ranging from clerical/support staff to administrative officials and monitored inflammatory marker levels and type 2 diabetes incidence in the study participants from 1991–1993 until 2007–2009. Of 6,387 participants who were not diabetic in 1991–1993, 731 developed diabetes during the 18-year follow-up. Compared to participants with the highest cumulative lifecourse socioeconomic score (calculated using information on father's occupational position and the participant's educational attainment and occupational position), participants with the lowest score had almost double the risk of developing diabetes during follow-up. Low lifetime socioeconomic status trajectories (being socially downwardly mobile or starting and ending with a low socioeconomic status) were also associated with an increased risk of developing diabetes in adulthood. A quarter of the excess risk associated with cumulative socioeconomic adversity and nearly a third of the excess risk associated with low socioeconomic trajectory was attributable to chronically increased inflammation.

          What Do These Findings Mean?

          These findings show a robust association between adverse socioeconomic circumstances over the lifecourse of the Whitehall II study participants and the risk of type 2 diabetes and suggest that chronic inflammation explains up to a third of this association. The accuracy of these findings may be affected by the measures of socioeconomic status used in the study. Moreover, because the study participants were from an occupational cohort, these findings need to be confirmed in a general population. Studies are also needed to examine the extent to which social inequalities in diabetes risk that are attributable to chronic inflammation are reversible. Importantly, if future studies confirm and extend the findings reported here, it might be possible to reduce the social inequalities in type 2 diabetes by promoting interventions designed to reduce inflammation, including weight management, physical activity, and smoking cessation programs and the use of anti-inflammatory drugs, among socially disadvantaged groups.

          Additional Information

          Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001479.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: not found
          • Article: not found

          Regression Models and Life-Tables

          D R Cox (1972)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation.

            The classification of diabetes mellitus and the tests used for its diagnosis were brought into order by the National Diabetes Data Group of the USA and the second World Health Organization Expert Committee on Diabetes Mellitus in 1979 and 1980. Apart from minor modifications by WHO in 1985, little has been changed since that time. There is however considerable new knowledge regarding the aetiology of different forms of diabetes as well as more information on the predictive value of different blood glucose values for the complications of diabetes. A WHO Consultation has therefore taken place in parallel with a report by an American Diabetes Association Expert Committee to re-examine diagnostic criteria and classification. The present document includes the conclusions of the former and is intended for wide distribution and discussion before final proposals are submitted to WHO for approval. The main changes proposed are as follows. The diagnostic fasting plasma (blood) glucose value has been lowered to > or =7.0 mmol l(-1) (6.1 mmol l(-1)). Impaired Glucose Tolerance (IGT) is changed to allow for the new fasting level. A new category of Impaired Fasting Glycaemia (IFG) is proposed to encompass values which are above normal but below the diagnostic cut-off for diabetes (plasma > or =6.1 to or =5.6 to <6.1 mmol l(-1)). Gestational Diabetes Mellitus (GDM) now includes gestational impaired glucose tolerance as well as the previous GDM. The classification defines both process and stage of the disease. The processes include Type 1, autoimmune and non-autoimmune, with beta-cell destruction; Type 2 with varying degrees of insulin resistance and insulin hyposecretion; Gestational Diabetes Mellitus; and Other Types where the cause is known (e.g. MODY, endocrinopathies). It is anticipated that this group will expand as causes of Type 2 become known. Stages range from normoglycaemia to insulin required for survival. It is hoped that the new classification will allow better classification of individuals and lead to fewer therapeutic misjudgements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammation and metabolic disorders.

              Metabolic and immune systems are among the most fundamental requirements for survival. Many metabolic and immune response pathways or nutrient- and pathogen-sensing systems have been evolutionarily conserved throughout species. As a result, immune response and metabolic regulation are highly integrated and the proper function of each is dependent on the other. This interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease. Collectively, these diseases constitute the greatest current threat to global human health and welfare.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS Med
                PLoS
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                July 2013
                July 2013
                2 July 2013
                : 10
                : 7
                : e1001479
                Affiliations
                [1 ]Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
                [2 ]University College London, Department of Epidemiology and Public Health, London, United Kingdom
                [3 ]Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
                [4 ]1st Department of Medicine, Semmelweis University Faculty of Medicine, Budapest, Hungary
                Chinese University of Hong Kong, China
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SS MKi. Performed the experiments: SS DB Mki PB. Analyzed the data: SS. Contributed reagents/materials/analysis tools: MKi AT MS MM Mku. Wrote the first draft of the manuscript: SS. Contributed to the writing of the manuscript: DB PB MS MM MKu AT MKi. ICMJE criteria for authorship read and met: SS DB PB MS MM MKu AT MKi. Agree with manuscript results and conclusions: SS DB PB MS MM MKu AT MKi. Enrolled patients: MKi MM MKu AT MS.

                Article
                PMEDICINE-D-12-03615
                10.1371/journal.pmed.1001479
                3699448
                23843750
                6300bb55-239b-4a5b-ac3e-7b02c8a4ca4c
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 December 2012
                : 22 May 2013
                Page count
                Pages: 15
                Funding
                SS is supported by a post-doctoral fellowship awarded by the Swiss School of Public Health (SSPH+). MK is supported by the Medical Research Council (K013351), UK, the US National Institutes of Health (R01HL036310; R01AG034454), the EU New OSH ERA Research Programme and an ESRC professorship. MS is supported by the British Heart Foundation. MK is partially supported by MRC, Economic and Social Research Council Grant RES 596-28-0001 and National Heart Lung and Blood Institute Grant HL36310. DB was a Wellcome Trust fellow during the preparation of this manuscript. The Whitehall II study has been supported by grants from the British Medical Research Council (MRC); the British Heart Foundation; the British Health and Safety Executive; the British Department of Health; the National Heart, Lung, and Blood Institute (R01HL036310); the National Institute on Aging, NIH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine
                Clinical Immunology
                Immunity
                Inflammation
                Endocrinology
                Diabetic Endocrinology
                Diabetes Mellitus Type 2
                Epidemiology
                Lifecourse Epidemiology
                Social Epidemiology

                Medicine
                Medicine

                Comments

                Comment on this article