7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Scalable Generation of Mesenchymal Stem Cells and Adipocytes from Human Pluripotent Stem Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human pluripotent stem cells (hPSCs) can provide unlimited supply for mesenchymal stem cells (MSCs) and adipocytes that can be used for therapeutic applications. Here we developed a simple and highly efficient all- trans-retinoic acid (RA)-based method for generating an off-the-shelf and scalable number of human pluripotent stem cell (hPSC)-derived MSCs with enhanced adipogenic potential. We showed that short exposure of multiple hPSC lines (hESCs/hiPSCs) to 10 μM RA dramatically enhances embryoid body (EB) formation through regulation of genes activating signaling pathways associated with cell proliferation, survival and adhesion, among others. Disruption of cell adhesion induced the subsequent differentiation of the highly expanded RA-derived EB-forming cells into a pure population of multipotent MSCs (up to 1542-fold increase in comparison to RA-untreated counterparts). Interestingly, the RA-derived MSCs displayed enhanced differentiation potential into adipocytes. Thus, these findings present a novel RA-based approach for providing an unlimited source of MSCs and adipocytes that can be used for regenerative medicine, drug screening and disease modeling applications.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Concise review: the surface markers and identity of human mesenchymal stem cells.

          The concept of mesenchymal stem cells (MSCs) is becoming increasingly obscure due to the recent findings of heterogeneous populations with different levels of stemness within MSCs isolated by traditional plastic adherence. MSCs were originally identified in bone marrow and later detected in many other tissues. Currently, no cloning based on single surface marker is capable of isolating cells that satisfy the minimal criteria of MSCs from various tissue environments. Markers that associate with the stemness of MSCs await to be elucidated. A number of candidate MSC surface markers or markers possibly related to their stemness have been brought forward so far, including Stro-1, SSEA-4, CD271, and CD146, yet there is a large difference in their expression in various sources of MSCs. The exact identity of MSCs in vivo is not yet clear, although reports have suggested they may have a fibroblastic or pericytic origin. In this review, we revisit the reported expression of surface molecules in MSCs from various sources, aiming to assess their potential as MSC markers and define the critical panel for future investigation. We also discuss the relationship of MSCs to fibroblasts and pericytes in an attempt to shed light on their identity in vivo. © 2014 AlphaMed Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors.

            Transcriptional activation of the nuclear receptor RAR by retinoic acid (RA) often leads to inhibition of cell growth. However, in some tissues, RA promotes cell survival and hyperplasia, activities that are unlikely to be mediated by RAR. Here, we show that, in addition to functioning through RAR, RA activates the "orphan" nuclear receptor PPARbeta/delta, which, in turn, induces the expression of prosurvival genes. Partitioning of RA between the two receptors is regulated by the intracellular lipid binding proteins CRABP-II and FABP5. These proteins specifically deliver RA from the cytosol to nuclear RAR and PPARbeta/delta, respectively, thereby selectively enhancing the transcriptional activity of their cognate receptors. Consequently, RA functions through RAR and is a proapoptotic agent in cells with high CRABP-II/FABP5 ratio, but it signals through PPARbeta/delta and promotes survival in cells that highly express FABP5. Opposing effects of RA on cell growth thus emanate from alternate activation of two different nuclear receptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adipogenesis and WNT signalling.

              An inability of adipose tissue to expand consequent to exhausted capacity to recruit new adipocytes might underlie the association between obesity and insulin resistance. Adipocytes arise from mesenchymal precursors whose commitment and differentiation along the adipocytic lineage is tightly regulated. These regulatory factors mediate cross-talk between adipose cells, ensuring that adipocyte growth and differentiation are coupled to energy storage demands. The WNT family of autocrine and paracrine growth factors regulates adult tissue maintenance and remodelling and, consequently, is well suited to mediate adipose cell communication. Indeed, several recent reports, summarized in this review, implicate WNT signalling in regulating adipogenesis. Manipulating the WNT pathway to alter adipose cellular makeup, therefore, constitutes an attractive drug-development target to combat obesity-associated metabolic complications.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                13 March 2020
                March 2020
                : 9
                : 3
                : 710
                Affiliations
                [1 ]Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box, Doha 34110, Qatar; manale.karam@ 123456ac.bioscience.com (M.K.); NElareer@ 123456hbku.edu.qa (N.R.E.); SNassar@ 123456hbku.edu.qa (S.N.)
                [2 ]Biological Sciences Program, Carnegie Mellon University in Qatar, Qatar Foundation, Education City, Doha 24866, Qatar; iyounis@ 123456andrew.cmu.edu
                [3 ]College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar
                Author notes
                [* ]Correspondence: emohamed@ 123456hbku.edu.qa ; Tel.: +97444546432
                Author information
                https://orcid.org/0000-0002-6433-4742
                https://orcid.org/0000-0003-3872-6934
                https://orcid.org/0000-0001-7764-6772
                Article
                cells-09-00710
                10.3390/cells9030710
                7140720
                32183164
                6341bc61-83b5-422a-ad56-6ac307f705c7
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 January 2020
                : 09 March 2020
                Categories
                Article

                retinoic acid,hpscs,mscs,apoptosis,proliferation,rna-seq,adipogenic differentiation

                Comments

                Comment on this article