22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prolonged forearm ischemia attenuates endothelium-dependent vasodilatation and plasma nitric oxide metabolites in overweight middle-aged men

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Repeated cycles of endothelial ischemia–reperfusion injury and the resulting respiratory burst contribute to the irreversible pathophysiology of vascular diseases, and yet, the effects of ischemia reperfusion on vascular function, oxidative stress, and nitric oxide (NO) bioavailability have not been assessed simultaneously. Therefore, this study sought to examine the effects of prolonged forearm occlusion and subsequent reperfusion on NO-dependent brachial artery endothelial function.

          Methods

          Flow-mediated dilatation was measured at baseline and 15, 30, and 45 min after 20-min forearm occlusion in 14 healthy, but physically inactive middle-aged men (53.7 ± 1.2 years, BMI: 28.1 ± 0.1 kg m −2). Venous blood samples collected from the occluded arm were analyzed for NO metabolites and markers of oxidative stress.

          Results

          FMD was significantly depressed after the prolonged occlusion compared to baseline, with a significant reduction 15-min post-occlusion (6.6 ± 0.7 to 2.9 ± 0.4%, p < 0.001); FMD remained depressed after 30 min (4.1 ± 0.6%, p = 0.001), but was not significantly different to baseline after 45-min recovery (5.4 ± 0.7%, p = 0.079). Plasma nitrate (main time effect: p = 0.015) and nitrite (main time effect: p = 0.034) concentrations were significantly reduced after prolonged occlusion. Plasma catalase activity was significantly elevated at 4- ( p = 0.016) and 45-min ( p = 0.001) post-occlusion, but plasma peroxiredoxin 2 and protein carbonyl content did not change.

          Conclusions

          Prolonged forearm occlusion resulted in acute impairment of endothelium-dependent vasodilatation of the brachial artery for at least 30 min after reperfusion. We demonstrate that this vascular dysfunction is associated with oxidative stress and reduced NO bioavailability following reperfusion.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Strategies to increase nitric oxide signalling in cardiovascular disease.

          Nitric oxide (NO) is a key signalling molecule in the cardiovascular, immune and central nervous systems, and crucial steps in the regulation of NO bioavailability in health and disease are well characterized. Although early approaches to therapeutically modulate NO bioavailability failed in clinical trials, an enhanced understanding of fundamental subcellular signalling has enabled a range of novel therapeutic approaches to be identified. These include the identification of: new pathways for enhancing NO synthase activity; ways to amplify the nitrate-nitrite-NO pathway; novel classes of NO-donating drugs; drugs that limit NO metabolism through effects on reactive oxygen species; and ways to modulate downstream phosphodiesterases and soluble guanylyl cyclases. In this Review, we discuss these latest developments, with a focus on cardiovascular disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism.

            The recent knowledge on mitochondria as the substantial source of reactive oxygen species, namely superoxide and hydrogen peroxide efflux from mitochondria, is reviewed, as well as nitric oxide and subsequent peroxynitrite generation in mitochondria and their effects. The reactive oxygen species formation in extramitochondrial locations, in peroxisomes, by cytochrome P450, and NADPH oxidase reaction, is also briefly discussed. Conditions are pointed out under which mitochondria represent the major ROS source for the cell: higher percentage of non-phosphorylating and coupled mitochondria, in vivo oxygen levels leading to increased intensity of the reverse electron transport in the respiratory chain, and nitric oxide effects on the redox state of cytochromes. We formulate hypotheses on the crucial role of ROS generated in mitochondria for the whole cell and organism, in concert with extramitochondrial ROS and antioxidant defense. We hypothesize that a sudden decline of mitochondrial ROS production converts cells or their microenvironment into a "ROS sink" represented by the instantly released excessive capacity of ROS-detoxification mechanisms. A partial but immediate decline of mitochondrial ROS production may be triggered by activation of mitochondrial uncoupling, specifically by activation of recruited or constitutively present uncoupling proteins such as UCP2, which may counterbalance the mild oxidative stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology.

              The endothelial generation of reactive oxygen species (ROS) is important both physiologically and in the pathogenesis of many cardiovascular disorders. ROS generated by endothelial cells include superoxide (O2-*), hydrogen peroxide (H2O2), peroxynitrite (ONOO-*), nitric oxide (NO), and hydroxyl (*OH) radicals. The O2-* radical, the focus of the current review, may have several effects either directly or through the generation of other radicals, e.g., H2O2 and ONOO-*. These effects include 1) rapid inactivation of the potent signaling molecule and endothelium-derived relaxing factor NO, leading to endothelial dysfunction; 2) the mediation of signal transduction leading to altered gene transcription and protein and enzyme activities ("redox signaling"); and 3) oxidative damage. Multiple enzymes can generate O2-*, notably xanthine oxidase, uncoupled NO synthase, and mitochondria. Recent studies indicate that a major source of endothelial O2-* involved in redox signaling is a multicomponent phagocyte-type NADPH oxidase that is subject to specific regulation by stimuli such as oscillatory shear stress, hypoxia, angiotensin II, growth factors, cytokines, and hyperlipidemia. Depending on the level of oxidants generated and the relative balance between pro- and antioxidant pathways, ROS may be involved in cell growth, hypertrophy, apoptosis, endothelial activation, and adhesivity, for example, in diabetes, hypertension, atherosclerosis, heart failure, and ischemia-reperfusion. This article reviews our current knowledge regarding the sources of endothelial ROS generation, their regulation, their involvement in redox signaling, and the relevance of enhanced ROS generation and redox signaling to the pathophysiology of cardiovascular disorders where endothelial activation and dysfunction are implicated. Copyright 2004 American Physiological Society
                Bookmark

                Author and article information

                Contributors
                +44 1392 262869 , j.bowtell@exeter.ac.uk
                Journal
                Eur J Appl Physiol
                Eur. J. Appl. Physiol
                European Journal of Applied Physiology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1439-6319
                1439-6327
                21 May 2018
                21 May 2018
                2018
                : 118
                : 8
                : 1565-1572
                Affiliations
                [1 ]ISNI 0000 0004 1936 8024, GRID grid.8391.3, Sport and Health Sciences, College of Life and Environmental Sciences, , University of Exeter, ; Exeter, EX1 2LU UK
                [2 ]ISNI 0000 0004 1936 8024, GRID grid.8391.3, University of Exeter Medical School, ; Exeter, UK
                Author notes

                Communicated by I. Mark Olfert.

                Article
                3886
                10.1007/s00421-018-3886-z
                6060779
                29785503
                634cac4d-1d7b-4d09-8669-b43e270738ca
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 29 December 2017
                : 6 May 2018
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2018

                Anatomy & Physiology
                forearm occlusion,endothelial function,nitrite/nitrate,peroxiredoxin-2
                Anatomy & Physiology
                forearm occlusion, endothelial function, nitrite/nitrate, peroxiredoxin-2

                Comments

                Comment on this article