0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Advances in preparation and characterization of chitosan nanoparticles for therapeutics

      , , , ,
      Artificial Cells, Nanomedicine, and Biotechnology
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Nanocarriers as an emerging platform for cancer therapy.

          Nanotechnology has the potential to revolutionize cancer diagnosis and therapy. Advances in protein engineering and materials science have contributed to novel nanoscale targeting approaches that may bring new hope to cancer patients. Several therapeutic nanocarriers have been approved for clinical use. However, to date, there are only a few clinically approved nanocarriers that incorporate molecules to selectively bind and target cancer cells. This review examines some of the approved formulations and discusses the challenges in translating basic research to the clinic. We detail the arsenal of nanocarriers and molecules available for selective tumour targeting, and emphasize the challenges in cancer treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chitosan nanoparticles as delivery systems for doxorubicin.

            The aim of this paper was to evaluate the potential of chitosan nanoparticles as carriers for the anthracycline drug, doxorubicin (DOX). The challenge was to entrap a cationic, hydrophilic molecule into nanoparticles formed by ionic gelation of the positively charged polysaccharide chitosan. To achieve this objective, we attempted to mask the positive charge of DOX by complexing it with the polyanion, dextran sulfate. This modification doubled DOX encapsulation efficiency relative to controls and enabled real loadings up to 4.0 wt.% DOX. Separately, we investigated the possibility of forming a complex between chitosan and DOX prior to the formation of the particles. Despite the low complexation efficiency, no dissociation of the complex was observed upon formation of the nanoparticles. Fluorimetric analysis of the drug released in vitro showed an initial release phase, the intensity of which was dependent on the association mode, followed by a very slow release. The evaluation of the activity of DOX-loaded nanoparticles in cell cultures indicated that those containing dextran sulfate were able to maintain cytostatic activity relative to free DOX, while DOX complexed to chitosan before nanoparticle formation showed slightly decreased activity. Additionally, confocal studies showed that DOX was not released in the cell culture medium but entered the cells while remaining associated to the nanoparticles. In conclusion, these preliminary studies showed the feasibility of chitosan nanoparticles to entrap the basic drug DOX and to deliver it into the cells in its active form.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release.

              Chitosan nanoparticles fabricated via different preparation protocols have been in recent years widely studied as carriers for therapeutic proteins and genes with varying degree of effectiveness and drawbacks. This work seeks to further explore the polyionic coacervation fabrication process, and associated processing conditions under which protein encapsulation and subsequent release can be systematically and predictably manipulated so as to obtain desired effectiveness. BSA was used as a model protein which was encapsulated by either incorporation or incubation method, using the polyanion tripolyphosphate (TPP) as the coacervation crosslink agent to form chitosan-BSA-TPP nanoparticles. The BSA-loaded chitosan-TPP nanoparticles were characterized for particle size, morphology, zeta potential, BSA encapsulation efficiency, and subsequent release kinetics, which were found predominantly dependent on the factors of chitosan molecular weight, chitosan concentration, BSA loading concentration, and chitosan/TPP mass ratio. The BSA loaded nanoparticles prepared under varying conditions were in the size range of 200-580nm, and exhibit a high positive zeta potential. Detailed sequential time frame TEM imaging of morphological change of the BSA loaded particles showed a swelling and particle degradation process. Initial burst released due to surface protein desorption and diffusion from sublayers did not relate directly to change of particle size and shape, which was eminently apparent only after 6h. It is also notable that later stage particle degradation and disintegration did not yield a substantial follow-on release, as the remaining protein molecules, with adaptable 3-D conformation, could be tightly bound and entangled with the cationic chitosan chains. In general, this study demonstrated that the polyionic coacervation process for fabricating protein loaded chitosan nanoparticles offers simple preparation conditions and a clear processing window for manipulation of physiochemical properties of the nanoparticles (e.g., size and surface charge), which can be conditioned to exert control over protein encapsulation efficiency and subsequent release profile. The weakness of the chitosan nanoparticle system lies typically with difficulties in controlling initial burst effect in releasing large quantities of protein molecules.
                Bookmark

                Author and article information

                Journal
                Artificial Cells, Nanomedicine, and Biotechnology
                Artificial Cells, Nanomedicine, and Biotechnology
                Informa UK Limited
                2169-1401
                2169-141X
                July 25 2014
                January 02 2016
                August 19 2014
                January 02 2016
                : 44
                : 1
                : 305-314
                Article
                10.3109/21691401.2014.948548
                25137489
                634de6e6-f3a0-446b-a16f-cb056634ba42
                © 2016
                History

                Comments

                Comment on this article