155
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beta carbonic anhydrases: novel targets for pesticides and anti-parasitic agents in agriculture and livestock husbandry

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The genomes of many insect and parasite species contain beta carbonic anhydrase (β-CA) protein coding sequences. The lack of β-CA proteins in mammals makes them interesting target proteins for inhibition in treatment of some infectious diseases and pests. Many insects and parasites represent important pests for agriculture and cause enormous economic damage worldwide. Meanwhile, pollution of the environment by old pesticides, emergence of strains resistant to them, and their off-target effects are major challenges for agriculture and society.

          Methods

          In this study, we analyzed a multiple sequence alignment of 31 β-CAs from insects, some parasites, and selected plant species relevant to agriculture and livestock husbandry. Using bioinformatics tools a phylogenetic tree was generated and the subcellular localizations and antigenic sites of each protein were predicted. Structural models for β-CAs of Ancylostoma caninum, Ascaris suum, Trichinella spiralis, and Entamoeba histolytica, were built using Pisum sativum and Mycobacterium tuberculosis β-CAs as templates.

          Results

          Six β-CAs of insects and parasites and six β-CAs of plants are predicted to be mitochondrial and chloroplastic, respectively, and thus may be involved in important metabolic functions. All 31 sequences showed the presence of the highly conserved β-CA active site sequence motifs, CXDXR and HXXC (C: cysteine, D: aspartic acid, R: arginine, H: histidine, X: any residue). We discovered that these two motifs are more antigenic than others. Homology models suggested that these motifs are mostly buried and thus not well accessible for recognition by antibodies.

          Conclusions

          The predicted mitochondrial localization of several β-CAs and hidden antigenic epitopes within the protein molecule, suggest that they may not be considered major targets for vaccines. Instead, they are promising candidate enzymes for small-molecule inhibitors which can easily penetrate the cell membrane. Based on current knowledge, we conclude that β-CAs are potential targets for development of small molecule pesticides or anti-parasitic agents with minimal side effects on vertebrates.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla.

          The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A semi-empirical method for prediction of antigenic determinants on protein antigens.

            Analysis of data from experimentally determined antigenic sites on proteins has revealed that the hydrophobic residues Cys, Leu and Val, if they occur on the surface of a protein, are more likely to be a part of antigenic sites. A semi-empirical method which makes use of physicochemical properties of amino acid residues and their frequencies of occurrence in experimentally known segmental epitopes was developed to predict antigenic determinants on proteins. Application of this method to a large number of proteins has shown that our method can predict antigenic determinants with about 75% accuracy which is better than most of the known methods. This method is based on a single parameter and thus very simple to use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Have biopesticides come of age?

              Biopesticides based on living microbes and their bioactive compounds have been researched and promoted as replacements for synthetic pesticides for many years. However, lack of efficacy, inconsistent field performance and high cost have generally relegated them to niche products. Recently, technological advances and major changes in the external environment have positively altered the outlook for biopesticides. Significant increases in market penetration have been made, but biopesticides still only make up a small percentage of pest control products. Progress in the areas of activity spectra, delivery options, persistence of effect and implementation have contributed to the increasing use of biopesticides, but technologies that are truly transformational and result in significant uptake are still lacking. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                reza.zolfaghari.emameh@uta.fi
                harlan.barker@uta.fi
                vesa.hytonen@uta.fi
                martti.tolvanen@uta.fi
                seppo.parkkila@uta.fi
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                29 August 2014
                29 August 2014
                2014
                : 7
                : 1
                : 403
                Affiliations
                [ ]School of Medicine, University of Tampere, 33520 Tampere, Finland
                [ ]BioMediTech, University of Tampere, 33520 Tampere, Finland
                [ ]Fimlab Laboratories Ltd and Tampere University Hospital, Biokatu 4, 33520 Tampere, Finland
                [ ]Department of Information Technology, University of Turku, 20014 Turku, Finland
                Article
                1584
                10.1186/1756-3305-7-403
                4162934
                25174433
                634ea0d3-286b-4c1b-ab8e-c599a3046b7d
                © Zolfaghari Emameh et al.; licensee BioMed Central Ltd. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 21 May 2014
                : 20 August 2014
                Categories
                Research
                Custom metadata
                © The Author(s) 2014

                Parasitology
                beta carbonic anhydrase,inhibitors,insecticides,pesticides,anti-parasitic agents,agriculture,livestock husbandry

                Comments

                Comment on this article