14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: identification of potential disease-specific targets

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute myeloid leukemia (AML) is associated with poor clinical outcome and the development of more effective therapies is urgently needed. G protein-coupled receptors (GPCRs) represent attractive therapeutic targets, accounting for approximately 30% of all targets of marketed drugs. Using next-generation sequencing, we studied the expression of 772 GPCRs in 148 genetically diverse AML specimens, normal blood and bone marrow cell populations as well as cord blood-derived CD34-positive cells. Among these receptors, 30 are overexpressed and 19 are downregulated in AML samples compared with normal CD34-positive cells. Upregulated GPCRs are enriched in chemokine ( CCR1, CXCR4, CCR2, CX3CR1, CCR7 and CCRL2), adhesion ( CD97, EMR1, EMR2 and GPR114) and purine (including P2RY2 and P2RY13) receptor subfamilies. The downregulated receptors include adhesion GPCRs, such as LPHN1, GPR125, GPR56, CELSR3 and GPR126, protease-activated receptors ( F2R and F2RL1) and the Frizzled family receptors SMO and FZD6. Interestingly, specific deregulation was observed in genetically distinct subgroups of AML, thereby identifying different potential therapeutic targets in these frequent AML subgroups.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          G-protein-coupled receptors and cancer.

          G-protein-coupled receptors (GPCRs), the largest family of cell-surface molecules involved in signal transmission, have recently emerged as crucial players in tumour growth and metastasis. Malignant cells often hijack the normal physiological functions of GPCRs to survive, proliferate autonomously, evade the immune system, increase their blood supply, invade their surrounding tissues and disseminate to other organs. This Review will address our current understanding of the many roles of GPCRs and their signalling circuitry in tumour progression and metastasis. We will also discuss how interfering with GPCRs might provide unique opportunities for cancer prevention and treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML.

            SDF-1alpha/CXCR4 signaling plays a key role in leukemia/bone marrow microenvironment interactions. We previously reported that bone marrow-derived stromal cells inhibit chemotherapy-induced apoptosis in acute myeloid leukemia (AML). Here we demonstrate that the CXCR4 inhibitor AMD3465 antagonized stromal-derived factor 1alpha (SDF-1alpha)-induced and stroma-induced chemotaxis and inhibited SDF-1alpha-induced activation of prosurvival signaling pathways in leukemic cells. Further, CXCR4 inhibition partially abrogated the protective effects of stromal cells on chemotherapy-induced apoptosis in AML cells. Fetal liver tyrosine kinase-3 (FLT3) gene mutations activate CXCR4 signaling, and coculture with stromal cells significantly diminished antileukemia effects of FLT3 inhibitors in cells with mutated FLT3. Notably, CXCR4 inhibition increased the sensitivity of FLT3-mutated leukemic cells to the apoptogenic effects of the FLT3 inhibitor sorafenib. In vivo studies demonstrated that AMD3465, alone or in combination with granulocyte colony-stimulating factor, induced mobilization of AML cells and progenitor cells into circulation and enhanced antileukemic effects of chemotherapy and sorafenib, resulting in markedly reduced leukemia burden and prolonged survival of the animals. These findings indicate that SDF-1alpha/CXCR4 interactions contribute to the resistance of leukemic cells to signal transduction inhibitor- and chemotherapy-induced apoptosis in systems mimicking the physiologic microenvironment. Disruption of these interactions with CXCR4 inhibitors represents a novel strategy of sensitizing leukemic cells by targeting their protective bone marrow microenvironment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia.

              The interaction of acute myeloid leukemia (AML) blasts with the leukemic microenvironment is postulated to be an important mediator of resistance to chemotherapy and disease relapse. We hypothesized that inhibition of the CXCR4/CXCL12 axis by the small molecule inhibitor, plerixafor, would disrupt the interaction of leukemic blasts with the environment and increase the sensitivity of AML blasts to chemotherapy. In this phase 1/2 study, 52 patients with relapsed or refractory AML were treated with plerixafor in combination with mitoxantrone, etoposide, and cytarabine. In phase 1, plerixafor was escalated to a maximum of 0.24 mg/kg/d without any dose-limiting toxicities. In phase 2, 46 patients were treated with plerixafor 0.24 mg/kg/d in combination with chemotherapy with an overall complete remission and complete remission with incomplete blood count recovery rate (CR + CRi) of 46%. Correlative studies demonstrated a 2-fold mobilization in leukemic blasts into the peripheral circulation. No evidence of symptomatic hyperleukocytosis or delayed count recovery was observed with the addition of plerixafor. We conclude that the addition of plerixafor to cytotoxic chemotherapy is feasible in AML, and results in encouraging rates of remission with correlative studies demonstrating in vivo evidence of disruption of the CXCR4/CXCL12 axis.
                Bookmark

                Author and article information

                Journal
                Blood Cancer J
                Blood Cancer J
                Blood Cancer Journal
                Nature Publishing Group
                2044-5385
                June 2016
                03 June 2016
                1 June 2016
                : 6
                : 6
                : e431
                Affiliations
                [1 ]Institute for Research in Immunology and Cancer (IRIC), Université de Montréal , Montréal, Québec, Canada
                [2 ]Department of Computer Science and Operations Research, Université de Montréal , Montréal, Québec, Canada
                [3 ]Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital , Montréal, Québec, Canada
                [4 ]Department of Biochemistry, Faculty of Medicine, Université de Montréal , Montréal, Québec, Canada
                [5 ]Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital , Montréal, Québec, Canada
                [6 ]Department of Medicine, Faculty of Medicine, Université de Montréal , Montréal, Québec, Canada
                Author notes
                [* ]Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital , 5415 L'Assomption Boulevard, Montreal, Quebec, Canada H1T 2M4. E-mail: josee.hebert@ 123456umontreal.ca
                Article
                bcj201636
                10.1038/bcj.2016.36
                5141352
                27258612
                6356295a-07dc-4e43-a3bb-6d0b52eff1a4
                Copyright © 2016 Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 11 April 2016
                : 20 April 2016
                Categories
                Original Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article