25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Lipoxin A₄ and benzo-lipoxin A₄ attenuate experimental renal fibrosis.

      The FASEB Journal

      Animals, Anti-Inflammatory Agents, Non-Steroidal, therapeutic use, Apoptosis, drug effects, Collagen, genetics, metabolism, Disease Models, Animal, Fibrosis, drug therapy, prevention & control, Gene Expression Regulation, Kidney, pathology, Kidney Diseases, Ligation, Lipoxins, chemistry, Male, Rats, Rats, Wistar, Transforming Growth Factor beta1

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Unresolved inflammation underlies the development of fibrosis and organ failure. Here, we investigate the potential of the proresolving eicosanoid lipoxinA₄ (LXA₄) and its synthetic analog benzo-LXA₄ to prophylactically modulate fibrotic and inflammatory responses in a model of early renal fibrosis, unilateral ureteric obstruction (UUO). Male Wistar rats (Animalia, Chordata, Rattus norvegicus) were injected intravenously with vehicle (0.1% ethanol), LXA₄ (45 μg/250-g rat), or benzo-LXA₄ (15 μg/250-g rat) 15 min prior to surgery and sacrificed 3 d postligation. Renal gene and protein expression, collagen deposition, macrophage infiltration, and apoptosis were analyzed using manipulated kidneys from sham operations as control. Lipoxins (LXs) attenuated collagen deposition and renal apoptosis (P<0.05) and shifted the inflammatory milieu toward resolution, inhibiting TNF-α and IFN-γ expression, while stimulating proresolving IL-10. LXs attenuated UUO-induced activation of MAP kinases, Akt, and Smads (P<0.05) in injured kidneys. We explored whether the underlying mechanism reflected LX-induced modulation of fibroblast activation. Using cultured rat renal NRK-49F fibroblasts, we report that LXA₄ (1 nM) inhibits TGF-β1 (10 ng/ml)-induced activation of Smad2 and MAP-kinases (P<0.05), and furthermore, LXA₄ reduced TGF-β1-stimulated PAI-1 luciferase activation (P<0.05) relative to vehicle-stimulated cells. We propose that LXs may represent a potentially useful and novel therapeutic strategy for consideration in the context of renal fibrosis.

          Related collections

          Author and article information

          Journal
          21628447
          10.1096/fj.11-185017

          Comments

          Comment on this article