Mosquitoes track odors, locate hosts, and find mates visually. The color of a food resource, such as a flower or warm-blooded host, can be dominated by long wavelengths of the visible light spectrum (green to red for humans) and is likely important for object recognition and localization. However, little is known about the hues that attract mosquitoes or how odor affects mosquito visual search behaviors. We use a real-time 3D tracking system and wind tunnel that allows careful control of the olfactory and visual environment to quantify the behavior of more than 1.3 million mosquito trajectories. We find that CO 2 induces a strong attraction to specific spectral bands, including those that humans perceive as cyan, orange, and red. Sensitivity to orange and red correlates with mosquitoes’ strong attraction to the color spectrum of human skin, which is dominated by these wavelengths. The attraction is eliminated by filtering the orange and red bands from the skin color spectrum and by introducing mutations targeting specific long-wavelength opsins or CO 2 detection. Collectively, our results show that odor is critical for mosquitoes’ wavelength preferences and that the mosquito visual system is a promising target for inhibiting their attraction to human hosts.
Vision in mosquitoes plays a critical but understudied role in their attraction to hosts. Here, the authors show that encounter with an attractive odor gates the mosquito attraction to specific colors, especially the long wavelengths reflected from human skin. Filtering the long wavelengths reflected from the human skin or knocking-out the ability for the mosquito to detect the wavelengths, suppressed their attraction. This work transforms our understanding of mosquito vision from the conventional view that vision does little in mediating mosquito-host interactions, to the recognition that vision plays a critical role.