38
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Climate Change and Eutrophication Induced Shifts in Northern Summer Plankton Communities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Marine ecosystems are undergoing substantial changes due to human-induced pressures. Analysis of long-term data series is a valuable tool for understanding naturally and anthropogenically induced changes in plankton communities. In the present study, seasonal monitoring data were collected in three sub-basins of the northern Baltic Sea between 1979 and 2011 and statistically analysed for trends and interactions between surface water hydrography, inorganic nutrient concentrations and phyto- and zooplankton community composition. The most conspicuous hydrographic change was a significant increase in late summer surface water temperatures over the study period. In addition, salinity decreased and dissolved inorganic nutrient concentrations increased in some basins. Based on redundancy analysis (RDA), warming was the key environmental factor explaining the observed changes in plankton communities: the general increase in total phytoplankton biomass, Cyanophyceae, Prymnesiophyceae and Chrysophyceae, and decrease in Cryptophyceae throughout the study area, as well as increase in rotifers and decrease in total zooplankton, cladoceran and copepod abundances in some basins. We conclude that the plankton communities in the Baltic Sea have shifted towards a food web structure with smaller sized organisms, leading to decreased energy available for grazing zooplankton and planktivorous fish. The shift is most probably due to complex interactions between warming, eutrophication and increased top-down pressure due to overexploitation of resources, and the resulting trophic cascades.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Impact of climate change on marine pelagic phenology and trophic mismatch.

          Phenology, the study of annually recurring life cycle events such as the timing of migrations and flowering, can provide particularly sensitive indicators of climate change. Changes in phenology may be important to ecosystem function because the level of response to climate change may vary across functional groups and multiple trophic levels. The decoupling of phenological relationships will have important ramifications for trophic interactions, altering food-web structures and leading to eventual ecosystem-level changes. Temperate marine environments may be particularly vulnerable to these changes because the recruitment success of higher trophic levels is highly dependent on synchronization with pulsed planktonic production. Using long-term data of 66 plankton taxa during the period from 1958 to 2002, we investigated whether climate warming signals are emergent across all trophic levels and functional groups within an ecological community. Here we show that not only is the marine pelagic community responding to climate changes, but also that the level of response differs throughout the community and the seasonal cycle, leading to a mismatch between trophic levels and functional groups.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global warming benefits the small in aquatic ecosystems.

            Understanding the ecological impacts of climate change is a crucial challenge of the twenty-first century. There is a clear lack of general rules regarding the impacts of global warming on biota. Here, we present a metaanalysis of the effect of climate change on body size of ectothermic aquatic organisms (bacteria, phyto- and zooplankton, and fish) from the community to the individual level. Using long-term surveys, experimental data and published results, we show a significant increase in the proportion of small-sized species and young age classes and a decrease in size-at-age. These results are in accordance with the ecological rules dealing with the temperature-size relationships (i.e., Bergmann's rule, James' rule and Temperature-Size Rule). Our study provides evidence that reduced body size is the third universal ecological response to global warming in aquatic systems besides the shift of species ranges toward higher altitudes and latitudes and the seasonal shifts in life cycle events.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biogeochemical Controls and Feedbacks on Ocean Primary Production

              Changes in oceanic primary production, linked to changes in the network of global biogeochemical cycles, have profoundly influenced the geochemistry of Earth for over 3 billion years. In the contemporary ocean, photosynthetic carbon fixation by marine phytoplankton leads to formation of approximately 45 gigatons of organic carbon per annum, of which 16 gigatons are exported to the ocean interior. Changes in the magnitude of total and export production can strongly influence atmospheric CO2 levels (and hence climate) on geological time scales, as well as set upper bounds for sustainable fisheries harvest. The two fluxes are critically dependent on geophysical processes that determine mixed-layer depth, nutrient fluxes to and within the ocean, and food-web structure. Because the average turnover time of phytoplankton carbon in the ocean is on the order of a week or less, total and export production are extremely sensitive to external forcing and consequently are seldom in steady state. Elucidating the biogeochemical controls and feedbacks on primary production is essential to understanding how oceanic biota responded to and affected natural climatic variability in the geological past, and will respond to anthropogenically influenced changes in coming decades. One of the most crucial feedbacks results from changes in radiative forcing on the hydrological cycle, which influences the aeolian iron flux and, in turn, affects nitrogen fixation and primary production in the oceans.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                12 June 2013
                : 8
                : 6
                : e66475
                Affiliations
                [1 ]Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
                [2 ]Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy
                [3 ]ARONIA Coastal Zone Research Team, Novia University of Applied Sciences and Åbo Akademi University, Ekenäs, Finland
                [4 ]Tvärminne Zoological Station, Hanko, Finland
                University of Connecticut, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SS AB JEÖ. Analyzed the data: SS SP AB. Wrote the paper: SS SP JEÖ ML SL AB.

                Article
                PONE-D-13-07168
                10.1371/journal.pone.0066475
                3680480
                23776676
                6372c127-9022-4f53-9f35-3eafb56cdbfc
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 February 2013
                : 7 May 2013
                Page count
                Pages: 10
                Funding
                This study was supported by the Finnish Institute of Marine Research, Finnish Environment Institute, Department of Natural Science and Environmental Resources of the University of Sassari, the Academy of Finland (grant numbers 259357 to SS and 255566 to JEÖ) and Walter and Andrée de Nottbeck Foundation (post-doctoral scholarship to AB). The funders had no role in study design and analyses, decision to publish, or in the preparation of the manuscript. The major part of the monitoring data used in the study was collected by personnel of the Finnish Institute of Marine Research and Finnish Environment Institute.
                Categories
                Research Article
                Biology
                Ecology
                Biodiversity
                Community Ecology
                Global Change Ecology
                Population Ecology
                Marine Biology
                Coastal Ecology
                Marine Conservation
                Marine Ecology
                Marine Monitoring
                Phycology
                Population Biology
                Population Dynamics
                Earth Sciences
                Atmospheric Science
                Climatology
                Climate Change
                Marine and Aquatic Sciences
                Marine Biology
                Marine Monitoring

                Uncategorized
                Uncategorized

                Comments

                Comment on this article