74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Battling malaria iceberg incorporating strategic reforms in achieving Millennium Development Goals & malaria elimination in India

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Malaria control in India has occupied high priority in health sector consuming major resources of the Central and State governments. Several new initiatives were launched from time to time supported by foreign aids but malaria situation has remained static and worsened in years of good rainfall. At times malaria relented temporarily but returned with vengeance at the local, regional and national level, becoming more resilient by acquiring resistance in the vectors and the parasites. National developments to improve the economy, without health impact assessment, have had adverse consequences by providing enormous breeding grounds for the vectors that have become refractory to interventions. As a result, malaria prospers and its control is in dilemma, as finding additional resources is becoming difficult with the ongoing financial crisis. Endemic countries must contribute to make up the needed resources, if malaria is to be contained. Malaria control requires long term planning, one that will reduce receptivity and vulnerability, and uninterrupted financial support for sustained interventions. While this seems to be a far cry, the environment is becoming more receptive for vectors, and epidemics visit the country diverting major resources in their containment, e.g. malaria, dengue and dengue haemorrhagic fevers, and Chikungunya virus infection. In the last six decades malaria has taken deep roots and diversified into various ecotypes, the control of these ecotypes requires local knowledge about the vectors and the parasites. In this review we outline the historical account of malaria and methods of control that have lifted the national economy in many countries. While battles against malaria should continue at the local level, there is a need for large scale environmental improvement. Global Fund for AIDS, Tuberculosis and Malaria has provided huge funds for malaria control worldwide touching US$ 2 billion in 2011. Unfortunately it is likely to decline to US$ 1.5 billion in the coming years against the annual requirement of US$ 5 billion. While appreciating the foreign assistance, we wish to highlight the fact that unless we have internal strength of resources and manpower, sustained battles against malaria may face serious problems in achieving the final goal of malaria elimination.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          The pathophysiology of vivax malaria.

          Long considered a benign infection, Plasmodium vivax is now recognized as a cause of severe and fatal malaria, despite its low parasite biomass, the increased deformability of vivax-infected red blood cells and an apparent paucity of parasite sequestration. Severe anemia is associated with recurrent bouts of hemolysis of predominantly uninfected erythrocytes with increased fragility, and lung injury is associated with inflammatory increases in alveolar-capillary membrane permeability. Although rare, vivax-associated coma challenges our understanding of pathobiology caused by Plasmodium spp. Host and parasite factors contribute to the risk of severe disease, and comorbidities might contribute to vivax mortality. In this review, we discuss potential mechanisms underlying the syndromes of uncomplicated and severe vivax malaria, identifying key areas for future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Indoor residual spraying for preventing malaria.

            Primary malaria prevention on a large scale depends on two vector control interventions: indoor residual spraying (IRS) and insecticide-treated mosquito nets (ITNs). Historically, IRS has reduced malaria transmission in many settings in the world, but the health effects of IRS have never been properly quantified. This is important, and will help compare IRS with other vector control interventions. To quantify the impact of IRS alone, and to compare the relative impacts of IRS and ITNs, on key malariological parameters. We searched the Cochrane Infectious Diseases Group Specialized Register (September 2009), CENTRAL (The Cochrane Library 2009, Issue 3), MEDLINE (1966 to September 2009), EMBASE (1974 to September 2009), LILACS (1982 to September 2009), mRCT (September 2009), reference lists, and conference abstracts. We also contacted researchers in the field, organizations, and manufacturers of insecticides (June 2007). Cluster randomized controlled trials (RCTs), controlled before-and-after studies (CBA) and interrupted time series (ITS) of IRS compared to no IRS or ITNs. Studies examining the impact of IRS on special groups not representative of the general population, or using insecticides and dosages not recommended by the World Health Organization (WHO) were excluded. Two authors independently reviewed trials for inclusion. Two authors extracted data, assessed risk of bias and analysed the data. Where possible, we adjusted confidence intervals (CIs) for clustering. Studies were grouped into those comparing IRS with no IRS, and IRS compared with ITNs, and then stratified by malaria endemicity. IRS versus no IRSStable malaria (entomological inoculation rate (EIR) > 1): In one RCT in Tanzania IRS reduced re-infection with malaria parasites detected by active surveillance in children following treatment; protective efficacy (PE) 54%. In the same setting, malaria case incidence assessed by passive surveillance was marginally reduced in children aged one to five years; PE 14%, but not in children older than five years (PE -2%). In the IRS group, malaria prevalence was slightly lower but this was not significant (PE 6%), but mean haemoglobin was higher (mean difference 0.85 g/dL).In one CBA trial in Nigeria, IRS showed protection against malaria prevalence during the wet season (PE 26%; 95% CI 20 to 32%) but not in the dry season (PE 6%; 95% CI -4 to 15%). In one ITS in Mozambique, the prevalence was reduced substantially over a period of 7 years (from 60 to 65% prevalence to 4 to 8% prevalence; the weighted PE before-after was 74% (95% CI 72 to 76%).Unstable malaria (EIR 1): Only one RCT was done in an area of stable transmission (in Tanzania). When comparing parasitological re-infection by active surveillance after treatment in short-term cohorts, ITNs appeared better, but it was likely not to be significant as the unadjusted CIs approached 1 (risk ratio IRS:ITN = 1.22). When the incidence of malaria episodes was measured by passive case detection, no difference was found in children aged one to five years (risk ratio = 0.88, direction in favour of IRS). No difference was found for malaria prevalence or haemoglobin.Unstable malaria (EIR < 1): Two studies; for incidence and prevalence, the malaria rates were higher in the IRS group compared to the ITN group in one study. Malaria incidence was higher in the IRS arm in India (risk ratio IRS:ITN = 1.48) and in South Africa (risk ratio 1.34 but the cluster unadjusted CIs included 1). For malaria prevalence, ITNs appeared to give better protection against any infection compared to IRS in India (risk ratio IRS:ITN = 1.70) and also for both P. falciparum (risk ratio IRS:ITN = 1.78) and P. vivax (risk ratio IRS:ITN = 1.37). Historical and programme documentation has clearly established the impact of IRS. However, the number of high-quality trials are too few to quantify the size of effect in different transmission settings. The evidence from randomized comparisons of IRS versus no IRS confirms that IRS reduces malaria incidence in unstable malaria settings, but randomized trial data from stable malaria settings is very limited. Some limited data suggest that ITN give better protection than IRS in unstable areas, but more trials are needed to compare the effects of ITNs with IRS, as well as to quantify their combined effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New developments in Plasmodium vivax malaria: severe disease and the rise of chloroquine resistance.

              Unlike Plasmodium falciparum, Plasmodium vivax rarely causes severe disease in healthy travellers or in temperate endemic regions and has been regarded as readily treatable with chloroquine. However, in tropical areas, recent reports have highlighted severe and fatal disease associated with P. vivax infection. We review the evidence for severe disease and the spread of drug-resistant P. vivax and speculate how these maybe related. Studies from Indonesia, Papua New Guinea, Thailand and India have shown that 21-27% of patients with severe malaria have P. vivax monoinfection. The clinical spectrum of these cases is broad with an overall mortality of 0.8-1.6%. Major manifestations include severe anaemia and respiratory distress, with infants being particularly vulnerable. Most reports of severe and fatal vivax malaria come from endemic regions where populations have limited access to healthcare, a high prevalence of comorbidity and where drug-resistant P. vivax strains and partially effective primaquine regimens significantly undermine the radical cure and control of this relapsing infection. The mechanisms underlying severe disease in vivax malaria remain poorly defined. Severe, fatal and multidrug-resistant vivax malaria challenge our perception of P. vivax as a benign disease. Strategies to understand and address these phenomena are needed urgently if the global elimination of malaria is to succeed.
                Bookmark

                Author and article information

                Journal
                Indian J Med Res
                Indian J. Med. Res
                IJMR
                The Indian Journal of Medical Research
                Medknow Publications & Media Pvt Ltd (India )
                0971-5916
                0975-9174
                December 2012
                : 136
                : 6
                : 907-925
                Affiliations
                [1] ICMR Chair in Public Health Research, Centre for Rural Development & Technology, Indian Institute of Technology, New Delhi, India
                Author notes
                Reprint requests: Dr V.P. Sharma, ICMR Chair in Public Health Research, Centre for Rural Development & Technology Indian Institute of Technology, Hauz Khas, New Delhi 110 016, India e-mail: vinodsharma1938@ 123456gmail.com
                Article
                IJMR-136-907
                3612321
                23391787
                6389ff38-ae86-492e-9929-419eadd4ca7b
                Copyright: © The Indian Journal of Medical Research

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 08 October 2012
                Categories
                Centenary Review Article

                Medicine
                drug resistance,malaria elimination,malaria profile,malaria vectors,mdg,mpo,urban malaria scheme
                Medicine
                drug resistance, malaria elimination, malaria profile, malaria vectors, mdg, mpo, urban malaria scheme

                Comments

                Comment on this article