Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Discovery of a potentially deleterious variant in TMEM87B in a patient with a hemizygous 2q13 microdeletion suggests a recessive condition characterized by congenital heart disease and restrictive cardiomyopathy

Read this article at

ScienceOpenPublisherPMC
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Restrictive cardiomyopathy (RCM) is a rare cause of heart muscle disease with the highest mortality rate among cardiomyopathy types. The etiology of RCM is poorly understood, although genetic causes have been implicated, and syndromic associations have been described. Here, we describe a patient with an atrial septal defect and restrictive cardiomyopathy along with craniofacial anomalies and intellectual disabilities. Initial screening using chromosomal microarray analysis (CMA) identified a maternally inherited 2q13 microdeletion. The patient had many of the features reported in previous cases with the recurrent 2q13 microdeletion syndrome. However, the inheritance of the microdeletion from an unaffected mother combined with the low incidence (10%) and milder forms of cardiac defects in previously reported cases made the clinical significance of the CMA results unclear. Whole-exome sequencing (WES) with trio-based analysis was performed and identified a paternally inherited TMEM87B mutation (c.1366A>G, p.Asn456Asp) in the patient. TMEM87B, a highly conserved, transmembrane protein of currently unknown function, lies within the critical region of the recurrent 2q13 microdeletion syndrome. Furthermore, a recent study had demonstrated that depletion of TMEM87B in zebrafish embryos affected cardiac development and led to cardiac hypoplasia. Thus, by combining CMA and WES, we potentially uncover an autosomal-recessive disorder characterized by a severe cardiac phenotype caused by mutations in TMEM87B. This study expands the spectrum of phenotypes associated with the recurrent 2q13 microdeletion syndrome and also further suggests the role of TMEM87B in its etiology, especially the cardiac pathology.

      Related collections

      Most cited references 39

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Sequence Alignment/Map format and SAMtools

      Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: rd@sanger.ac.uk
        Bookmark
        • Record: found
        • Abstract: found
        • Article: found
        Is Open Access

        Fast and accurate short read alignment with Burrows–Wheeler transform

        Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
          Bookmark
          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences

          Increased reliance on computational approaches in the life sciences has revealed grave concerns about how accessible and reproducible computation-reliant results truly are. Galaxy http://usegalaxy.org, an open web-based platform for genomic research, addresses these problems. Galaxy automatically tracks and manages data provenance and provides support for capturing the context and intent of computational methods. Galaxy Pages are interactive, web-based documents that provide users with a medium to communicate a complete computational analysis.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
            [2 ]Department of Pediatrics, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
            [3 ]Colorado Intellectual and Developmental Disabilities Research Center (IDDRC), University of Colorado School of Medicine, Aurora, Colorado 80045, USA
            Author notes
            [4]

            These authors contributed equally to this work.

            Corresponding author: tamim.shaikh@ 123456ucdenver.edu
            Journal
            Cold Spring Harb Mol Case Stud
            Cold Spring Harb Mol Case Stud
            cshmcs
            cshmcs
            cshmcs
            Cold Spring Harbor Molecular Case Studies
            Cold Spring Harbor Laboratory Press
            2373-2865
            2373-2873
            May 2016
            : 2
            : 3
            27148590
            4853521
            10.1101/mcs.a000844
            YuMCS000844

            This article is distributed under the terms of the Creative Commons Attribution-NonCommercial License, which permits reuse and redistribution, except for commercial purposes, provided that the original author and source are credited.

            Counts
            Pages: 15
            Product
            Funding
            Funded by: National Institutes of Health http://dx.doi.org/10.13039/100000002
            Award ID: GM081519
            Categories
            Research Report

            Comments

            Comment on this article