50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ΔNp73, A Dominant-Negative Inhibitor of Wild-type p53 and TAp73, Is Up-regulated in Human Tumors

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          p73 has significant homology to p53. However, tumor-associated up-regulation of p73 and genetic data from human tumors and p73-deficient mice exclude a classical Knudson-type tumor suppressor role. We report that the human TP73 gene generates an NH 2 terminally truncated isoform. ΔNp73 derives from an alternative promoter in intron 3 and lacks the transactivation domain of full-length TAp73. ΔNp73 is frequently overexpressed in a variety of human cancers, but not in normal tissues. ΔNp73 acts as a potent transdominant inhibitor of wild-type p53 and transactivation-competent TAp73. ΔNp73 efficiently counteracts transactivation function, apoptosis, and growth suppression mediated by wild-type p53 and TAp73, and confers drug resistance to wild-type p53 harboring tumor cells. Conversely, down-regulation of endogenous ΔNp73 levels by antisense methods alleviates its suppressive action and enhances p53- and TAp73-mediated apoptosis. ΔNp73 is complexed with wild-type p53, as demonstrated by coimmunoprecipitation from cultured cells and primary tumors. Thus, ΔNp73 mediates a novel inactivation mechanism of p53 and TAp73 via a dominant-negative family network. Deregulated expression of ΔNp73 can bestow oncogenic activity upon the TP73 gene by functionally inactivating the suppressor action of p53 and TAp73. This trait might be selected for in human cancers.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Rapid planetesimal formation in turbulent circumstellar discs

          The initial stages of planet formation in circumstellar gas discs proceed via dust grains that collide and build up larger and larger bodies (Safronov 1969). How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem (Dominik et al. 2007): boulders stick together poorly (Benz 2000), and spiral into the protostar in a few hundred orbits due to a head wind from the slower rotating gas (Weidenschilling 1977). Gravitational collapse of the solid component has been suggested to overcome this barrier (Safronov 1969, Goldreich & Ward 1973, Youdin & Shu 2002). Even low levels of turbulence, however, inhibit sedimentation of solids to a sufficiently dense midplane layer (Weidenschilling & Cuzzi 1993, Dominik et al. 2007), but turbulence must be present to explain observed gas accretion in protostellar discs (Hartmann 1998). Here we report the discovery of efficient gravitational collapse of boulders in locally overdense regions in the midplane. The boulders concentrate initially in transient high pressures in the turbulent gas (Johansen, Klahr, & Henning 2006), and these concentrations are augmented a further order of magnitude by a streaming instability (Youdin & Goodman 2005, Johansen, Henning, & Klahr 2006, Johansen & Youdin 2007) driven by the relative flow of gas and solids. We find that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes. Gravitational collapse happens much faster than radial drift, offering a possible path to planetesimal formation in accreting circumstellar discs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Dicke Quantum Phase Transition with a Superfluid Gas in an Optical Cavity

            A phase transition describes the sudden change of state in a physical system, such as the transition between a fluid and a solid. Quantum gases provide the opportunity to establish a direct link between experiment and generic models which capture the underlying physics. A fundamental concept to describe the collective matter-light interaction is the Dicke model which has been predicted to show an intriguing quantum phase transition. Here we realize the Dicke quantum phase transition in an open system formed by a Bose-Einstein condensate coupled to an optical cavity, and observe the emergence of a self-organized supersolid phase. The phase transition is driven by infinitely long-ranged interactions between the condensed atoms. These are induced by two-photon processes involving the cavity mode and a pump field. We show that the phase transition is described by the Dicke Hamiltonian, including counter-rotating coupling terms, and that the supersolid phase is associated with a spontaneously broken spatial symmetry. The boundary of the phase transition is mapped out in quantitative agreement with the Dicke model. The work opens the field of quantum gases with long-ranged interactions, and provides access to novel quantum phases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53.

              The tumour-suppressor gene p53 is inactivated in most human malignancies either by missense mutations or by binding to oncogenic proteins. In human soft tissue sarcomas, inactivation apparently results from MDM2 gene amplification. MDM2 is an oncogene product that may function by binding to p53 and inhibiting its ability to activate transcription. Here we show that, when expressed in Saccharomyces cerevisiae, human MDM2 inhibits human p53's ability to stimulate transcription by binding to a region that nearly coincides with the p53 acidic activation domain. The isolated p53 activation domain fused to another DNA-binding protein is also inactivated by MDM2, confirming that MDM2 can inhibit p53 function by concealing the activation domain of p53 from the cellular transcription machinery.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                16 September 2002
                : 196
                : 6
                : 765-780
                Affiliations
                [1 ]Department of Pathology, Stony Brook University, Stony Brook, NY 11794
                [2 ]Department of Obstetrics and Gynecology, Stony Brook University, Stony Brook, NY 11794
                Author notes

                Address correspondence to Ute M. Moll, Department of Pathology, BST L9 R134, Stony Brook University, Stony Brook, NY 11794. Phone: 631-444-2459; Fax: 631-444-3424; E-mail: umoll@ 123456notes.cc.sunysb.edu

                Article
                20020179
                10.1084/jem.20020179
                2194062
                12235210
                639af80b-12ef-409b-8db4-fd423c7818c2
                Copyright © 2002, The Rockefeller University Press
                History
                : 1 February 2002
                : 24 June 2002
                : 18 July 2002
                Categories
                Article

                Medicine
                deregulation in tumor,apoptosis,ex2del p73,p73,δnp73
                Medicine
                deregulation in tumor, apoptosis, ex2del p73, p73, δnp73

                Comments

                Comment on this article