15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      S100‐A9 protein in exosomes derived from follicular fluid promotes inflammation via activation of NF‐κB pathway in polycystic ovary syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exosomes have recently emerged as key mediators of different physiological and pathological processes. However, there has been few report about proteomic analysis of exosomes derived from human follicular fluid and their association with the occurrence of PCOS. Herein, we used TMT‐tagged quantitative proteomic approach to identify proteomic profiles in exosomes derived from follicular fluid of PCOS patients and healthy controls. We identified 662 proteins in exosomes derived from human ovarian follicular fluid. Eighty‐six differently expressed proteins ( P < .05) were found between PCOS and healthy women. The alterations in the proteomic profile were related to the inflammation process, reactive oxygen species metabolic process, cell migration and proliferation. Importantly, we observed that follicular fluid exosomes contain S100 calcium‐binding protein A9 (S100‐A9) protein. Exosome‐enriched S100‐A9 significantly enhanced inflammation and disrupted steroidogenesis via activation of nuclear factor kappa B (NF‐κB) signalling pathway. These data demonstrate that exosomal proteins are differentially expressed in follicular fluid during disease process, and some proteins may play important roles in the regulation of granulosa cell function. These results highlight the importance of exosomes as extracellular communicators in ovarian follicular development.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001.

          Obesity and diabetes are increasing in the United States. To estimate the prevalence of obesity and diabetes among US adults in 2001. Random-digit telephone survey of 195 005 adults aged 18 years or older residing in all states participating in the Behavioral Risk Factor Surveillance System in 2001. Body mass index, based on self-reported weight and height and self-reported diabetes. In 2001 the prevalence of obesity (BMI > or =30) was 20.9% vs 19.8% in 2000, an increase of 5.6%. The prevalence of diabetes increased to 7.9% vs 7.3% in 2000, an increase of 8.2%. The prevalence of BMI of 40 or higher in 2001 was 2.3%. Overweight and obesity were significantly associated with diabetes, high blood pressure, high cholesterol, asthma, arthritis, and poor health status. Compared with adults with normal weight, adults with a BMI of 40 or higher had an odds ratio (OR) of 7.37 (95% confidence interval [CI], 6.39-8.50) for diagnosed diabetes, 6.38 (95% CI, 5.67-7.17) for high blood pressure, 1.88 (95% CI,1.67-2.13) for high cholesterol levels, 2.72 (95% CI, 2.38-3.12) for asthma, 4.41 (95% CI, 3.91-4.97) for arthritis, and 4.19 (95% CI, 3.68-4.76) for fair or poor health. Increases in obesity and diabetes among US adults continue in both sexes, all ages, all races, all educational levels, and all smoking levels. Obesity is strongly associated with several major health risk factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polycystic Ovary Syndrome

            New England Journal of Medicine, 352(12), 1223-1236
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functions of S100 proteins.

              The S100 protein family consists of 24 members functionally distributed into three main subgroups: those that only exert intracellular regulatory effects, those with intracellular and extracellular functions and those which mainly exert extracellular regulatory effects. S100 proteins are only expressed in vertebrates and show cell-specific expression patterns. In some instances, a particular S100 protein can be induced in pathological circumstances in a cell type that does not express it in normal physiological conditions. Within cells, S100 proteins are involved in aspects of regulation of proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and migration/invasion through interactions with a variety of target proteins including enzymes, cytoskeletal subunits, receptors, transcription factors and nucleic acids. Some S100 proteins are secreted or released and regulate cell functions in an autocrine and paracrine manner via activation of surface receptors (e.g. the receptor for advanced glycation end-products and toll-like receptor 4), G-protein-coupled receptors, scavenger receptors, or heparan sulfate proteoglycans and N-glycans. Extracellular S100A4 and S100B also interact with epidermal growth factor and basic fibroblast growth factor, respectively, thereby enhancing the activity of the corresponding receptors. Thus, extracellular S100 proteins exert regulatory activities on monocytes/macrophages/microglia, neutrophils, lymphocytes, mast cells, articular chondrocytes, endothelial and vascular smooth muscle cells, neurons, astrocytes, Schwann cells, epithelial cells, myoblasts and cardiomyocytes, thereby participating in innate and adaptive immune responses, cell migration and chemotaxis, tissue development and repair, and leukocyte and tumor cell invasion.
                Bookmark

                Author and article information

                Contributors
                jiyazhong@hotmail.com
                kaiwangcn@yahoo.com
                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                10.1111/(ISSN)1582-4934
                JCMM
                Journal of Cellular and Molecular Medicine
                John Wiley and Sons Inc. (Hoboken )
                1582-1838
                1582-4934
                30 September 2019
                January 2020
                : 24
                : 1 ( doiID: 10.1111/jcmm.v24.1 )
                : 114-125
                Affiliations
                [ 1 ] Clinical and Translational Research Center Shanghai First Maternity and Infant Hospital Tongji University School of Medicine Shanghai China
                [ 2 ] Department of Assisted Reproduction Shanghai First Maternity and Infant Hospital Tongji University School of Medicine Shanghai China
                [ 3 ] Department of Pathology Shanghai First Maternity and Infant Hospital Tongji University School of Medicine Shanghai China
                [ 4 ] Reproductive Medical Center Tongji Hospital Tongji University School of Medicine Shanghai China
                Author notes
                [*] [* ] Correspondence

                Yazhong Ji, Reproductive Medical Center, Tongji Hospital, Tongji University School of Medicine, No. 389, Xincun Road, Putuo District, Shanghai 200065, China.

                Email: jiyazhong@ 123456hotmail.com

                Kai Wang, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Pudong District, Shanghai 201204, China.

                Email: kaiwangcn@ 123456yahoo.com

                Author information
                https://orcid.org/0000-0003-1806-8882
                Article
                JCMM14642
                10.1111/jcmm.14642
                6933366
                31568644
                63a25aaa-e1da-479e-9a6d-8999a23b3951
                © 2019 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 April 2019
                : 05 August 2019
                : 16 August 2019
                Page count
                Figures: 6, Tables: 2, Pages: 12, Words: 7355
                Funding
                Funded by: The National Natural Science Foundation of China
                Award ID: 81873832
                Funded by: National Key Research and Development Program of China
                Award ID: 2017YFA0104600
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                January 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.7.3 mode:remove_FC converted:27.12.2019

                Molecular medicine
                exosome,follicular fluid,polycystic ovary syndrome,protein profile/proteomic analysis

                Comments

                Comment on this article