+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Control of Entamoeba histolytica adherence involves metallosurface protease 1, an M8 family surface metalloprotease with homology to leishmanolysin.

      Infection and Immunity
      Animals, Antibodies, Monoclonal, CHO Cells, Cell Adhesion, Cells, Cultured, Cricetinae, Cricetulus, Entamoeba histolytica, cytology, genetics, physiology, Gene Expression Regulation, Humans, Immunoblotting, Jurkat Cells, Metalloendopeptidases, metabolism, Mice, Phylogeny, Protozoan Proteins, Reverse Transcriptase Polymerase Chain Reaction, Time Factors

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Invasive amebiasis due to Entamoeba histolytica infection is an important cause of morbidity in developing countries. The E. histolytica genome contains two homologues to the metalloprotease leishmanolysin gene, Entamoeba histolytica MSP-1 (EhMSP-1) and EhMSP-2, while the commensal ameba Entamoeba dispar has lost EhMSP-1. In this study, we sought to characterize E. histolytica metallosurface protease 1 (EhMSP-1). Using immunoprecipitation and a model substrate, we found that EhMSP-1 was a functional metalloprotease. Confocal microscopy and flow cytometry revealed that EhMSP-1 localized to the cell surface and revealed the existence of distinct, nonclonal trophozoite populations with high and low EhMSP-1 surface abundance that became synchronized following serum starvation. Phenotypic assays were performed after silencing EhMSP-1. Adherence of EhMSP-1-deficient trophozoites to tissue culture cell monolayers was more than five times greater than that of control amebas, but surface staining of several antigens, including the galactose adherence lectin, was unchanged. EhMSP-1 silencing similarly increased adherence to both viable and apoptotic Jurkat lymphocytes. Tissue culture cell monolayer destruction was reduced by EhMSP-1 silencing, although it was blocked almost completely by inhibiting cysteine proteases. Consistent with a primary defect in regulation of amebic adherence, EhMSP-1 silencing also resulted in reduced mobility on tissue culture cell monolayers and in increased phagocytosis. In conclusion, EhMSP-1 was shown to be a surface metalloprotease involved in regulation of amebic adherence, with additional effects on cell motility, cell monolayer destruction, and phagocytosis.

          Related collections

          Author and article information


          Comment on this article