6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Meant to merge: Fabrication of stretchy electronics for robotics

      , ,
      Science Robotics
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the next generation of squishy robots on the rise, advanced soft electronic skins could provide the ultimate touch.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          An ultra-lightweight design for imperceptible plastic electronics.

          Electronic devices have advanced from their heavy, bulky origins to become smart, mobile appliances. Nevertheless, they remain rigid, which precludes their intimate integration into everyday life. Flexible, textile and stretchable electronics are emerging research areas and may yield mainstream technologies. Rollable and unbreakable backplanes with amorphous silicon field-effect transistors on steel substrates only 3 μm thick have been demonstrated. On polymer substrates, bending radii of 0.1 mm have been achieved in flexible electronic devices. Concurrently, the need for compliant electronics that can not only be flexed but also conform to three-dimensional shapes has emerged. Approaches include the transfer of ultrathin polyimide layers encapsulating silicon CMOS circuits onto pre-stretched elastomers, the use of conductive elastomers integrated with organic field-effect transistors (OFETs) on polyimide islands, and fabrication of OFETs and gold interconnects on elastic substrates to realize pressure, temperature and optical sensors. Here we present a platform that makes electronics both virtually unbreakable and imperceptible. Fabricated directly on ultrathin (1 μm) polymer foils, our electronic circuits are light (3 g m(-2)) and ultraflexible and conform to their ambient, dynamic environment. Organic transistors with an ultra-dense oxide gate dielectric a few nanometres thick formed at room temperature enable sophisticated large-area electronic foils with unprecedented mechanical and environmental stability: they withstand repeated bending to radii of 5 μm and less, can be crumpled like paper, accommodate stretching up to 230% on prestrained elastomers, and can be operated at high temperatures and in aqueous environments. Because manufacturing costs of organic electronics are potentially low, imperceptible electronic foils may be as common in the future as plastic wrap is today. Applications include matrix-addressed tactile sensor foils for health care and monitoring, thin-film heaters, temperature and infrared sensors, displays, and organic solar cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multigait soft robot.

            This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation

              Soft robotic systems are well suited to unstructured, dynamic tasks and environments, owing to their ability to adapt and conform without damaging themselves or their surroundings. These abilities are crucial in areas such as human-robot interaction. Soft robotic systems are currently limited by the soft actuators that power them. To date, most soft actuators are based on pneumatics or shape-memory alloys, which have issues with efficiency, response speed, and portability. Dielectric elastomer actuators (DEAs) are controlled and powered electrically and excel with muscle-like actuation, but they typically require a rigid frame and prestretch to perform effectively. In addition, DEAs require complex stacks or structures to achieve linear contraction modes. We present a class of soft electrohydraulic transducers, termed Peano-HASEL (hydraulically amplified self-healing electrostatic) actuators, that combine the strengths of fluidic actuators and electrostatic actuators, while addressing many of their issues. These actuators use both electrostatic and hydraulic principles to linearly contract on application of voltage in a muscle-like fashion, without rigid frames, prestretch, or stacked configurations. We fabricated these actuators using a facile heat-sealing method with inexpensive commercially available materials. These prototypical devices demonstrated controllable linear contraction up to 10%, a strain rate of 900% per second, actuation at 50 hertz, and the ability to lift more than 200 times their weight. In addition, these actuators featured characteristics such as high optical transparency and the ability to self-sense their deformation state. Hence, this class of actuators demonstrates promise for applications such as active prostheses, medical and industrial automation, and autonomous robotic devices.
                Bookmark

                Author and article information

                Journal
                Science Robotics
                Sci. Robot.
                American Association for the Advancement of Science (AAAS)
                2470-9476
                May 30 2018
                May 30 2018
                May 30 2018
                May 30 2018
                : 3
                : 18
                : eaat9091
                Article
                10.1126/scirobotics.aat9091
                63b20192-ef64-4ab7-bd25-492d33ed2872
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article