4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects and mechanisms of PPARα activator fenofibrate on myocardial remodelling in hypertension

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although peroxisome proliferator-activated receptor α (PPARα) is highly expressed in the heart, the effects of PPARα on cardiac remodelling and the underlying mechanisms are unclear. The present study was undertaken to test the hypothesis that PPARα activator fenofibrate plays a key role in left ventricular hypertrophic remodelling via the formation of c-fos/c-jun heterodimers in spontaneous hypertensive rats (SHRs). Twenty-four male 8-week-old SHRs were randomly divided into two groups, one group treated with oral saline ( n= 10) and another treated with oral fenofibrate (60 mg.kg −1.d −1, n= 14). Ten same-aged Wistar–Kyoto (WKY) rats were selected as a normal control group. Using echocardiography, immunohistochemistry, co-immunoprecipitation, Western blot analysis and real-time RT-PCR, we showed that the left ventricular wall thickness and significantly reduced and left ventricular diastolic function improved in SHRs treated with fenofibrate compared with SHRs treated with saline. Similarly, the excessive collagen deposition and the up-regulation of collagen I, collagen III, c-fos and c-jun seen in SHRs receiving saline were significantly attenuated in SHRs receiving fenofibrate. In addition, fenofibrate markedly decreased the expression of AP-1 and c-fos/c-jun heterodimers ( P < 0.01). These results demonstrated that PPARα activator fenofibrate may exert a protective effect on cardiac remodelling in SHRs by decreasing the expression of c-fos and c-jun and suppressing the formation of c-fos/c-jun heterodimers, which may further inhibit transcription of the downstream genes involved in the pathogenesis of left ventricular hypertrophy induced by hypertension.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat.

          Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that can be activated by various xenobiotics and natural fatty acids. These transcription factors primarily regulate genes involved in lipid metabolism and also play a role in adipocyte differentiation. We present the expression patterns of the PPAR subtypes in the adult rat, determined by in situ hybridization using specific probes for PPAR-alpha, -beta and -gamma, and by immunohistochemistry using a polyclonal antibody that recognizes the three rat PPAR subtypes. In numerous cell types from either ectodermal, mesodermal, or endodermal origin, PPARs are coexpressed, with relative levels varying between them from one cell type to the other. PPAR-alpha is highly expressed in hepatocytes, cardiomyocytes, enterocytes, and the proximal tubule cells of kidney. PPAR-beta is expressed ubiquitously and often at higher levels than PPAR-alpha and -gamma. PPAR-gamma is expressed predominantly in adipose tissue and the immune system. Our results suggest new potential directions to investigate the functions of the different PPAR subtypes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1.

            Interleukin-6 (IL-6) is a pleiotropic cytokine, whose plasma levels are elevated in inflammatory diseases such as atherosclerosis. We have previously reported that peroxisome proliferator-activated receptor alpha (PPARalpha) ligands (fibrates) lower elevated plasma concentrations of IL-6 in patients with atherosclerosis and inhibit IL-1-stimulated IL-6 secretion by human aortic smooth muscle cells (SMC). Here, we show that aortic explants isolated from PPARalpha-null mice display an exacerbated response to inflammatory stimuli, such as lipopolysaccharide (LPS), as demonstrated by increased IL-6 secretion. Furthermore, fibrate treatment represses IL-6 mRNA levels in LPS-stimulated aortas of PPARalpha wild-type, but not of PPARalpha-null mice, demonstrating a role for PPARalpha in this fibrate action. In human aortic SMC, fibrates inhibit IL-1-induced IL-6 gene expression. Furthermore, activation of PPARalpha represses both c-Jun- and p65-induced transcription of the human IL-6 promoter. Transcriptional interference between PPARalpha and both c-Jun and p65 occurs reciprocally, since c-Jun and p65 also inhibit PPARalpha-mediated activation of a PPAR response element-driven promoter. This transcriptional interference occurs independent of the promoter context as demonstrated by cotransfection experiments using PPARalpha, p65, and c-Jun Gal4 chimeras. Overexpression of the transcriptional coactivator cAMP-responsive element-binding protein-binding protein (CBP) does not relieve PPARalpha-mediated transcriptional repression of p65 and c-Jun. Finally, glutathione S-transferase pull-down experiments demonstrate that PPARalpha physically interacts with c-Jun, p65, and CBP. Altogether these data indicate that fibrates inhibit the vascular inflammatory response via PPARalpha by interfering with the NF-kappaB and AP-1 transactivation capacity involving direct protein-protein interaction with p65 and c-Jun.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth.

              We sought to delineate the molecular regulatory events involved in the energy substrate preference switch from fatty acids to glucose during cardiac hypertrophic growth. alpha(1)-adrenergic agonist-induced hypertrophy of cardiac myocytes in culture resulted in a significant decrease in palmitate oxidation rates and a reduction in the expression of the gene encoding muscle carnitine palmitoyltransferase I (M-CPT I), an enzyme involved in mitochondrial fatty acid uptake. Cardiac myocyte transfection studies demonstrated that M-CPT I promoter activity is repressed during cardiac myocyte hypertrophic growth, an effect that mapped to a peroxisome proliferator-activated receptor-alpha (PPARalpha) response element. Ventricular pressure overload studies in mice, together with PPARalpha overexpression studies in cardiac myocytes, demonstrated that, during hypertrophic growth, cardiac PPARalpha gene expression falls and its activity is altered at the posttranscriptional level via the extracellular signal-regulated kinase mitogen-activated protein kinase pathway. Hypertrophied myocytes exhibited reduced capacity for cellular lipid homeostasis, as evidenced by intracellular fat accumulation in response to oleate loading. These results indicate that during cardiac hypertrophic growth, PPARalpha is deactivated at several levels, leading to diminished capacity for myocardial lipid and energy homeostasis.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                John Wiley & Sons, Ltd (Chichester, UK )
                1582-1838
                1582-4934
                Nov-Dec 2009
                27 August 2008
                : 13
                : 11-12
                : 4444-4452
                Affiliations
                [a ]Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital Shandong Province, China
                [b ]Department of Emergency, Shandong University Qilu Hospital Shandong Province, China
                [c ]Department of Cardiology, Shandong University Qilu Hospital Shandong Province, China
                [d ]Intensive Care Unit, The Second Hospital of Shandong University Shandong Province, China
                Author notes
                * Correspondence to: Pei-Li BU, M.D., Ph.D, or Yun ZHANG, M.D, Ph.D, Shandong University Qilu Hospital, Jinan, No. 107, Wen Hua Xi Road, Jinan, Shandong, 250012, P.R. China. Tel.: +86531-82169257; Fax: +86531-86169356 E-mail: peilibu@ 123456hotmail.com or zhangyun@ 123456sdu.edu.cn
                [#]

                These authors contributed equally to this work.

                Article
                10.1111/j.1582-4934.2008.00484.x
                4515060
                18754816
                63bc46e6-0bcd-4116-a1aa-c6d8b595e614
                © 2008 The Authors Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
                History
                : 04 April 2008
                : 18 August 2008
                Categories
                Articles

                Molecular medicine
                peroxisome proliferator-activated receptor,fenofibrate,hypertension,cardiac remodelling

                Comments

                Comment on this article