Blog
About

6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increasing Probability of Heat-Related Mortality in a Mediterranean City Due to Urban Warming

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extreme temperatures impose thermal stress on human health, resulting in increased hospitalizations and mortality rate. We investigated the circulatory and respiratory causes of death for the years 2007 to 2014 inclusive for the urban and rural areas of Nicosia, Cyprus under urban heatwave and non-heatwave conditions. Heatwaves were defined as four or more consecutive days with mean urban daily temperature over the 90th percentile threshold temperature of the eight investigated years. Lag period of adverse health effects was found to be up to three days following the occurrence of high temperatures. The relative risk (RR) for mortality rate under heatwave and non-heatwave conditions was found taking in consideration the lag period. The results showed the increase of mortality risk particularly for men of ages 65–69 (RR = 2.38) and women of ages 65–74 (around RR = 2.54) in the urban area, showing that women were more vulnerable to heat extremities. High temperatures were also associated with high ozone concentrations, but they did not impose an excess risk factor, as they did not reach extreme values. This analysis highlights the importance of preparing for potential heat related health impacts even in Cyprus, which is an island with frequent heatwaves.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found

          Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States.

          Many studies have linked weather to mortality; however, role of such critical factors as regional variation, susceptible populations, and acclimatization remain unresolved. We applied time-series models to 107 US communities allowing a nonlinear relationship between temperature and mortality by using a 14-year dataset. Second-stage analysis was used to relate cold, heat, and heat wave effect estimates to community-specific variables. We considered exposure timeframe, susceptibility, age, cause of death, and confounding from pollutants. Heat waves were modeled with varying intensity and duration. Heat-related mortality was most associated with a shorter lag (average of same day and previous day), with an overall increase of 3.0% (95% posterior interval: 2.4%-3.6%) in mortality risk comparing the 99th and 90th percentile temperatures for the community. Cold-related mortality was most associated with a longer lag (average of current day up to 25 days previous), with a 4.2% (3.2%-5.3%) increase in risk comparing the first and 10th percentile temperatures for the community. Mortality risk increased with the intensity or duration of heat waves. Spatial heterogeneity in effects indicates that weather-mortality relationships from 1 community may not be applicable in another. Larger spatial heterogeneity for absolute temperature estimates (comparing risk at specific temperatures) than for relative temperature estimates (comparing risk at community-specific temperature percentiles) provides evidence for acclimatization. We identified susceptibility based on age, socioeconomic conditions, urbanicity, and central air conditioning. Acclimatization, individual susceptibility, and community characteristics all affect heat-related effects on mortality.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A decade of weather extremes

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use

               W. Wagner (1999)
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                25 July 2018
                August 2018
                : 15
                : 8
                Affiliations
                [1 ]Energy, Environment and Water Research Center, The Cyprus Institute, P.O. Box 27456, Nicosia 1645, Cyprus
                [2 ]The Anita Lawrence Chair in High Performance Architecture, School of Built Environment, University of New South Wales, Sydney 2052, Australia
                Author notes
                Article
                ijerph-15-01571
                10.3390/ijerph15081571
                6121589
                30044376
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Public health

                urban heat island, relative risk, health, humidity, pm10, ozone, heatwaves

                Comments

                Comment on this article