+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of pirfenidone in the management of pulmonary fibrosis

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Pulmonary fibrosis is associated with a number of specific forms of interstitial lung disease (ILD) and can lead to progressive decline in lung function, poor quality of life, and, ultimately, early death. Idiopathic pulmonary fibrosis (IPF), the most common fibrotic ILD, affects up to 1 in 200 elderly individuals and has a median survival that ranges from 3 to 5 years following initial diagnosis. IPF has not been shown to respond to immunomodulatory therapies, but recent trials with novel antifibrotic agents have demonstrated lessening of lung function decline over time. Pirfenidone has been shown to significantly slow decline in forced vital capacity (FVC) over time and prolong progression-free survival, which led to its licensing by the United States Food and Drug Administration (FDA) in 2014 for the treatment of patients with IPF. However, pirfenidone has been associated with significant side effects, and patients treated with pirfenidone must be carefully monitored. We review recent and ongoing clinical research and experience with pirfenidone as a pharmacologic therapy for patients with IPF, provide a suggested approach to incorporate pirfenidone into a treatment algorithm for patients with IPF, and examine the potential of pirfenidone as a treatment for non-IPF forms of ILD accompanied by progressive pulmonary fibrosis.

          Related collections

          Most cited references 50

          • Record: found
          • Abstract: found
          • Article: not found

          TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease.

           Zea Borok,  C. Willis (2007)
          Epithelial-mesenchymal transition (EMT), a process whereby fully differentiated epithelial cells undergo transition to a mesenchymal phenotype giving rise to fibroblasts and myofibroblasts, is increasingly recognized as playing an important role in repair and scar formation following epithelial injury. The extent to which this process contributes to fibrosis following injury in the lung is a subject of active investigation. Recently, it was demonstrated that transforming growth factor (TGF)-beta induces EMT in alveolar epithelial cells (AEC) in vitro and in vivo, and epithelial and mesenchymal markers have been colocalized to hyperplastic type II (AT2) cells in lung tissue from patients with idiopathic pulmonary fibrosis (IPF), suggesting that AEC may exhibit extreme plasticity and serve as a source of fibroblasts and/or myofibroblasts in lung fibrosis. In this review, we describe the characteristic features of EMT and its mechanistic underpinnings. We further describe the contribution of EMT to fibrosis in adult tissues following injury, focusing especially on the critical role of TGF-beta and its downstream mediators in this process. Finally, we highlight recent descriptions of EMT in the lung and the potential implications of this process for the treatment of fibrotic lung disease. Treatment for fibrosis of the lung in diseases such as IPF has heretofore focused largely on amelioration of potential inciting processes such as inflammation. It is hoped that this review will stimulate further consideration of the cellular mechanisms of fibrogenesis in the lung and especially the role of the epithelium in this process, potentially leading to innovative avenues of investigation and treatment.
            • Record: found
            • Abstract: found
            • Article: not found

            A common MUC5B promoter polymorphism and pulmonary fibrosis.

            The mutations that have been implicated in pulmonary fibrosis account for only a small proportion of the population risk. Using a genomewide linkage scan, we detected linkage between idiopathic interstitial pneumonia and a 3.4-Mb region of chromosome 11p15 in 82 families. We then evaluated genetic variation in this region in gel-forming mucin genes expressed in the lung among 83 subjects with familial interstitial pneumonia, 492 subjects with idiopathic pulmonary fibrosis, and 322 controls. MUC5B expression was assessed in lung tissue. Linkage and fine mapping were used to identify a region of interest on the p-terminus of chromosome 11 that included gel-forming mucin genes. The minor-allele of the single-nucleotide polymorphism (SNP) rs35705950, located 3 kb upstream of the MUC5B transcription start site, was present at a frequency of 34% among subjects with familial interstitial pneumonia, 38% among subjects with idiopathic pulmonary fibrosis, and 9% among controls (allelic association with familial interstitial pneumonia, P=1.2×10(-15); allelic association with idiopathic pulmonary fibrosis, P=2.5×10(-37)). The odds ratios for disease among subjects who were heterozygous and those who were homozygous for the minor allele of this SNP were 6.8 (95% confidence interval [CI], 3.9 to 12.0) and 20.8 (95% CI, 3.8 to 113.7), respectively, for familial interstitial pneumonia and 9.0 (95% CI, 6.2 to 13.1) and 21.8 (95% CI, 5.1 to 93.5), respectively, for idiopathic pulmonary fibrosis. MUC5B expression in the lung was 14.1 times as high in subjects who had idiopathic pulmonary fibrosis as in those who did not (P<0.001). The variant allele of rs35705950 was associated with up-regulation in MUC5B expression in the lung in unaffected subjects (expression was 37.4 times as high as in unaffected subjects homozygous for the wild-type allele, P<0.001). MUC5B protein was expressed in lesions of idiopathic pulmonary fibrosis. A common polymorphism in the promoter of MUC5B is associated with familial interstitial pneumonia and idiopathic pulmonary fibrosis. Our findings suggest that dysregulated MUC5B expression in the lung may be involved in the pathogenesis of pulmonary fibrosis. (Funded by the National Heart, Lung, and Blood Institute and others.).
              • Record: found
              • Abstract: found
              • Article: not found

              A multidimensional index and staging system for idiopathic pulmonary fibrosis.

              Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an overall poor prognosis. A simple-to-use staging system for IPF may improve prognostication, help guide management, and facilitate research. To develop a multidimensional prognostic staging system for IPF by using commonly measured clinical and physiologic variables. A clinical prediction model was developed and validated by using retrospective data from 3 large, geographically distinct cohorts. Interstitial lung disease referral centers in California, Minnesota, and Italy. 228 patients with IPF at the University of California, San Francisco (derivation cohort), and 330 patients at the Mayo Clinic and Morgagni-Pierantoni Hospital (validation cohort). The primary outcome was mortality, treating transplantation as a competing risk. Model discrimination was assessed by the c-index, and calibration was assessed by comparing predicted and observed cumulative mortality at 1, 2, and 3 years. Four variables were included in the final model: gender (G), age (A), and 2 lung physiology variables (P) (FVC and Dlco). A model using continuous predictors (GAP calculator) and a simple point-scoring system (GAP index) performed similarly in derivation (c-index of 70.8 and 69.3, respectively) and validation (c-index of 69.1 and 68.7, respectively). Three stages (stages I, II, and III) were identified based on the GAP index with 1-year mortality of 6%, 16%, and 39%, respectively. The GAP models performed similarly in pooled follow-up visits (c-index ≥71.9). Patients were drawn from academic centers and analyzed retrospectively. The GAP models use commonly measured clinical and physiologic variables to predict mortality in patients with IPF.

                Author and article information

                Ther Clin Risk Manag
                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                03 April 2017
                : 13
                : 427-437
                [1 ]University of Wisconsin Lung Transplant and Advanced Lung Diseas Program
                [2 ]Department of Medicine, Section of Allergy, Pulmonary and Critical Care Medicine, Clinical Sciences Center, University of Wisconsin School of Medicine and Public Health
                [3 ]Department of Pharmacy
                [4 ]Department of Pulmonary Medicine, University of Wisconsin Hospital and Clinics, Madison, WI, USA
                Author notes
                Correspondence: Keith C Meyer, Department of Medicine, Section of Allergy, Pulmonary and Critical Care Medicine, K4/910 Clinical Sciences Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA, Tel +1 608 263 6363, Fax +1 608 263 3104, Email kcm@ 123456medicine.wisc.edu
                © 2017 Meyer and Decker. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.



                interstitial lung disease, pirfenidone, treatments, idiopathic pulmonary fibrosis


                Comment on this article