21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Australia’s prehistoric ‘swamp king’: revision of the Plio-Pleistocene crocodylian genus Pallimnarchus de Vis, 1886

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The crocodylian fossil record from the Cenozoic of Australasia is notable for its rich taxonomic diversity, and is primarily represented by members of the clade Mekosuchinae. Reports of crocodylian fossils from Australia date back to the late nineteenth century. In 1886, Charles Walter de Vis proposed the name Pallimnarchus pollens for crocodylian fossils from southeast Queensland—the first binomen given to an extinct crocodylian taxon from Australia. Pallimnarchus has come to be regarded as a large, broad-snouted crocodylian from Australia’s Plio-Pleistocene, and numerous specimens, few of which are sufficiently complete, have been assigned to it by several authors throughout the twentieth century. In the late 1990s, the genus was expanded to include a second species, Pallimnarchus gracilis. Unfortunately, the original syntype series described as Pallimnarchus pollens is very fragmentary and derives from more than one taxon, while a large part of the subsequently selected lectotype specimen is missing. Because descriptions and illustrations of the complete lectotype do not reveal any autapomorphic features, we propose that Pallimnarchus pollens should be regarded as a nomen dubium. Following this decision, the fossil material previously referred to Pallimnarchus is of uncertain taxonomic placement. A partial skull, formerly assigned to Pallimnarchus pollens and known as ‘Geoff Vincent’s specimen’, possesses many features of diagnostic value and is therefore used as basis to erect a new genus and species —Paludirex vincenti gen. et sp. nov. A comprehensive description is given for the osteology of ‘Geoff Vincent’s specimen’ as well as aspects of its palaeoneurology, the latter being a first for an extinct Australian crocodyliform. The newly named genus is characterized by a unique combination of premaxillary features such as a distinctive arching of the anterior alveolar processes of the premaxillae, a peculiar arrangement of the first two premaxillary alveoli and a large size disparity between the 3rd and 4th premaxillary alveoli. These features presently allow formal recognition of two species within the genus, Paludirex vincenti and Paludirex gracilis comb. nov., with the former having comparatively more robust rostral proportions than the latter. The Paludirex vincenti holotype comes from the Pliocene Chinchilla Sand of the Darling Downs, south-eastern Queensland, whereas the material assigned to Paludirex gracilis is from the Pleistocene of Terrace Site Local Fauna, Riversleigh, northwest Queensland. Phylogenetic analyses recover Paludirex vincenti as a mekosuchine, although further cladistic assessments are needed to better understand the relationships within the clade.

          Related collections

          Most cited references216

          • Record: found
          • Abstract: found
          • Article: not found

          CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.

          The recently-developed statistical method known as the "bootstrap" can be used to place confidence intervals on phylogenies. It involves resampling points from one's own data, with replacement, to create a series of bootstrap samples of the same size as the original data. Each of these is analyzed, and the variation among the resulting estimates taken to indicate the size of the error involved in making estimates from the original data. In the case of phylogenies, it is argued that the proper method of resampling is to keep all of the original species while sampling characters with replacement, under the assumption that the characters have been independently drawn by the systematist and have evolved independently. Majority-rule consensus trees can be used to construct a phylogeny showing all of the inferred monophyletic groups that occurred in a majority of the bootstrap samples. If a group shows up 95% of the time or more, the evidence for it is taken to be statistically significant. Existing computer programs can be used to analyze different bootstrap samples by using weights on the characters, the weight of a character being how many times it was drawn in bootstrap sampling. When all characters are perfectly compatible, as envisioned by Hennig, bootstrap sampling becomes unnecessary; the bootstrap method would show significant evidence for a group if it is defined by three or more characters.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Bootstrap Methods: Another Look at the Jackknife

            B Efron (1979)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TNT version 1.5, including a full implementation of phylogenetic morphometrics

              Version 1.5 of the computer program TNT completely integrates landmark data into phylogenetic analysis. Landmark data consist of coordinates (in two or three dimensions) for the terminal taxa; TNT reconstructs shapes for the internal nodes such that the difference between ancestor and descendant shapes for all tree branches sums up to a minimum; this sum is used as tree score. Landmark data can be analysed alone or in combination with standard characters; all the applicable commands and options in TNT can be used transparently after reading a landmark data set. The program continues implementing all the types of analyses in former versions, including discrete and continuous characters (which can now be read at any scale, and automatically rescaled by TNT). Using algorithms described in this paper, searches for landmark data can be made tens to hundreds of times faster than it was possible before (from T to 3T times faster, where T is the number of taxa), thus making phylogenetic analysis of landmarks feasible even on standard personal computers.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                21 December 2020
                2020
                : 8
                : e10466
                Affiliations
                [1 ]School of Biological Sciences, The Univeristy of Queensland , Brisbane, QLD, Australia
                [2 ]Museum of Central Australia, Museum and Art Gallery of the Northern Territory , Alice Springs, NT, Australia
                [3 ]School of Earth and Environmental Sciences, The University of Queensland , Brisbane, QLD, Australia
                [4 ]University of California Museum of Paleontology , Berkeley, CA, USA
                [5 ]College of Science and Engineering, Flinders University , Adelaide, SA, Australia
                Author information
                http://orcid.org/0000-0001-9006-219X
                http://orcid.org/0000-0001-8406-4594
                http://orcid.org/0000-0003-2370-4046
                http://orcid.org/0000-0003-4097-8567
                Article
                10466
                10.7717/peerj.10466
                7759136
                33391869
                63e269ac-48fd-4ee4-a37a-97eff2950cca
                © 2020 Ristevski et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 28 August 2020
                : 10 November 2020
                Funding
                Funded by: University of Queensland International Postgraduate Scholarship
                This study was made possible with a University of Queensland International Postgraduate Scholarship granted to Jorgo Ristevski. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Paleontology
                Taxonomy
                Zoology

                pallimnarchus,paludirex,mekosuchinae,crocodylia,pliocene,pleistocene,cenozoic,queensland,australia

                Comments

                Comment on this article