24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Radiocarbon Dating and Wood Density Chronologies of Mangrove Trees in Arid Western Australia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mangrove trees tend to be larger and mangrove communities more diverse in tropical latitudes, particularly where there is high rainfall. Variation in the structure, growth and productivity of mangrove forests over climatic gradients suggests they are sensitive to variations in climate, but evidence of changes in the structure and growth of mangrove trees in response to climatic variation is scarce. Bomb-pulse radiocarbon dating provides accurate dates of recent wood formation and tree age of tropical and subtropical tree species. Here, we used radiocarbon techniques combined with X-ray densitometry to develop a wood density chronology for the mangrove Avicennia marina in the Exmouth Gulf, Western Australia (WA). We tested whether wood density chronologies of A. marina were sensitive to variation in the Pacific Decadal Oscillation Index, which reflects temperature fluctuations in the Pacific Ocean and is linked to the instrumental rainfall record in north WA. We also determined growth rates in mangrove trees from the Exmouth Gulf, WA. We found that seaward fringing A. marina trees (∼10 cm diameter) were 48±1 to 89±23 years old (mean ± 1 σ) and that their growth rates ranged from 4.08±2.36 to 5.30±3.33 mm/yr (mean ±1 σ). The wood density of our studied mangrove trees decreased with increases in the Pacific Decadal Oscillation Index. Future predicted drying of the region will likely lead to further reductions in wood density and their associated growth rates in mangrove forests in the region.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Towards a worldwide wood economics spectrum.

          Wood performs several essential functions in plants, including mechanically supporting aboveground tissue, storing water and other resources, and transporting sap. Woody tissues are likely to face physiological, structural and defensive trade-offs. How a plant optimizes among these competing functions can have major ecological implications, which have been under-appreciated by ecologists compared to the focus they have given to leaf function. To draw together our current understanding of wood function, we identify and collate data on the major wood functional traits, including the largest wood density database to date (8412 taxa), mechanical strength measures and anatomical features, as well as clade-specific features such as secondary chemistry. We then show how wood traits are related to one another, highlighting functional trade-offs, and to ecological and demographic plant features (growth form, growth rate, latitude, ecological setting). We suggest that, similar to the manifold that tree species leaf traits cluster around the 'leaf economics spectrum', a similar 'wood economics spectrum' may be defined. We then discuss the biogeography, evolution and biogeochemistry of the spectrum, and conclude by pointing out the major gaps in our current knowledge of wood functional traits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regional and phylogenetic variation of wood density across 2456 Neotropical tree species.

            Wood density is a crucial variable in carbon accounting programs of both secondary and old-growth tropical forests. It also is the best single descriptor of wood: it correlates with numerous morphological, mechanical, physiological, and ecological properties. To explore the extent to which wood density could be estimated for rare or poorly censused taxa, and possible sources of variation in this trait, we analyzed regional, taxonomic, and phylogenetic variation in wood density among 2456 tree species from Central and South America. Wood density varied over more than one order of magnitude across species, with an overall mean of 0.645 g/cm3. Our geographical analysis showed significant decreases in wood density with increasing altitude and significant differences among low-altitude geographical regions: wet forests of Central America and western Amazonia have significantly lower mean wood density than dry forests of Central and South America, eastern and central Amazonian forests, and the Atlantic forests of Brazil; and eastern Amazonian forests have lower wood densities than the dry forests and the Atlantic forest. A nested analysis of variance showed that 74% of the species-level wood density variation was explained at the genus level, 34% at the Angiosperm Phylogeny Group (APG) family level, and 19% at the APG order level. This indicates that genus-level means give reliable approximations of values of species, except in a few hypervariable genera. We also studied which evolutionary shifts in wood density occurred in the phylogeny of seed plants using a composite phylogenetic tree. Major changes were observed at deep nodes (Eurosid 1), and also in more recent divergences (for instance in the Rhamnoids, Simaroubaceae, and Anacardiaceae). Our unprecedented wood density data set yields consistent guidelines for estimating wood densities when species-level information is lacking and should significantly reduce error in Central and South American carbon accounting programs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species.

              *In a comparative study of 42 rainforest tree species we examined relationships amongst wood traits, diameter growth and survival of large trees in the field, and shade tolerance and adult stature of the species. *The species show two orthogonal axes of trait variation: a primary axis related to the vessel size-number trade-off (reflecting investment in hydraulic conductance vs hydraulic safety) and a secondary axis related to investment in parenchyma vs fibres (storage vs strength). Across species, growth rate was positively related to vessel diameter and potential specific hydraulic conductance (K(p)), and negatively related to wood density. Survival rate was only positively related to wood density. *Light-demanding species were characterized by low wood and vessel density and wide vessels. Tall species were characterized by wide vessels with low density and large K(p). Hydraulic traits were more closely associated with adult stature than with light demand, possibly because tall canopy species experience more drought stress and face a higher cavitation risk. *Vessel traits affect growth and wood density affects growth and survival of large trees in the field. Vessel traits and wood density are therefore important components of the performance and life history strategies of tropical tree species.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                12 November 2013
                : 8
                : 11
                : e80116
                Affiliations
                [1 ]The School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
                [2 ]Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
                [3 ]Plant Biology and Nature Management, Vrije Universiteit Brussel, Brussels, Belgium
                DOE Pacific Northwest National Laboratory, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: NSS QH NS CEL. Performed the experiments: NSS QH. Analyzed the data: NSS QH CEL. Contributed reagents/materials/analysis tools: NSS QH CEL. Wrote the paper: NSS. Critically revised the manuscript: CEL.

                Article
                PONE-D-13-21261
                10.1371/journal.pone.0080116
                3827189
                63e9fb75-2837-485f-875d-27a096637cc6
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 May 2013
                : 28 September 2013
                Page count
                Pages: 8
                Funding
                This work was supported by The Mexican Council of Science and Technology (CONACYT), The Secretary of Public Education (SEP, Mexico), the Australian Institute of Nuclear Science and Engineering (AINSE Grant No. 09047 & 11114), ARC Discovery award DP1096749, The School of Biological Sciences at the The University of Queensland (UQ) and the Research Foundation - Flanders (FWO). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article