Blog
About

3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Decoding Complex Sounds Using Broadband Population Recordings from Secondary Auditory Cortex of Macaques

      Preprint

      , , , , ,

      bioRxiv

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Direct electronic communication with sensory areas of the neocortex is a challenging ambition for brain-computer interfaces. Here, we report the first successful neural decoding of English words with high intelligibility from intracortical spike-based neural population activity recorded from the secondary auditory cortex of macaques. We acquired 96-channel full-broadband population recordings using intracortical microelectrode arrays in the rostral and caudal parabelt regions of the superior temporal gyrus (STG). We leveraged a new neural processing toolkit to investigate the choice of decoding algorithm, neural preprocessing, audio representation, channel count, and array location on neural decoding performance. The results illuminated a view of the auditory cortex as a spatially distributed network and a general purpose processor of complex sounds. The presented spike-based machine learning neural decoding approach may further be useful in informing future encoding strategies to deliver direct auditory percepts to the brain as specific patterns of microstimulation.

          Related collections

          Author and article information

          Journal
          bioRxiv
          April 20 2019
          Article
          10.1101/614248
          © 2019
          Product

          Molecular medicine, Neurosciences

          Comments

          Comment on this article