Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Hemodialysis-Associated Neutropenia and Hypoxemia: The Effect of Dialyzer Membrane Materials

      ,

      Nephron

      S. Karger AG

      Neutropenia, Hypoxemia, Dialyzer membranes, Biocompatibility

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The fall in white blood cells (WBC) and arterial oxygen pressure that occurs during hemodialysis was investigated as a function of different dialysis membranes and different sterilization methods. 8 chronic hemodialysis patients were studied and each was dialyzed with three different membranes: cellulosic hollow fiber, polyacrylonitrile flat sheet and polymethylmethacrylate hollow fiber. Each dialyzer was studied with a dry sterilization method and after formalin treatment. Arterialized blood gas, bicarbonate and WBC were drawn at various intervals throughout dialysis. The effect of the sterilization method was minimal. Cellulosic membranes were shown to cause significantly more neutropenia (p < 0.001) and hypoxemia (p < 0.0l) than the other two membranes. No significant differences was seen in pH, PCO<sub>2</sub> and bicarbonate. The results indicate differences in biocompatibility between different membranes. Clinical implications are discussed.

          Related collections

          Author and article information

          Journal
          NEF
          Nephron
          10.1159/issn.1660-8151
          Nephron
          S. Karger AG
          1660-8151
          2235-3186
          1982
          1982
          03 December 2008
          : 32
          : 1
          : 32-39
          Affiliations
          Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, and The Kidney Center, Boston, Mass., USA
          Article
          182728 Nephron 1982;32:32–39
          10.1159/000182728
          6817150
          © 1982 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          Page count
          Pages: 8
          Categories
          Original Paper

          Cardiovascular Medicine, Nephrology

          Dialyzer membranes, Hypoxemia, Biocompatibility, Neutropenia

          Comments

          Comment on this article