10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improving the trajectory of transpedicular transdiscal lumbar screw fixation with a computer-assisted 3D-printed custom drill guide

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transpedicular transdiscal screw fixation is an alternative technique used in lumbar spine fixation; however, it requires an accurate screw trajectory. The aim of this study is to design a novel 3D-printed custom drill guide and investigate its accuracy to guide the trajectory of transpedicular transdiscal (TPTD) lumbar screw fixation. Dicom images of thirty lumbar functional segment units (FSU, two segments) of L1–L4 were acquired from the PACS system in our hospital (patients who underwent a CT scan for other abdomen diseases and had normal spine anatomy) and imported into reverse design software for three-dimensional reconstructions. Images were used to print the 3D lumbar models and were imported into CAD software to design an optimal TPTD screw trajectory and a matched custom drill guide. After both the 3D printed FSU models and 3D-printed custom drill guide were prepared, the TPTD screws will be guided with a 3D-printed custom drill guide and introduced into the 3D printed FSU models. No significant statistical difference in screw trajectory angles was observed between the digital model and the 3D-printed model ( P > 0.05). Our present study found that, with the help of CAD software, it is feasible to design a TPTD screw custom drill guide that could guide the accurate TPTD screw trajectory on 3D-printed lumbar models.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Free hand pedicle screw placement in the thoracic spine: is it safe?

          A retrospective study. To evaluate the safety of a free hand technique of pedicle screw placement in the thoracic spine at a single institution over a 10-year experience. Thoracic pedicle screw fixation techniques are still controversial for thoracic deformities because of possible complications including neurologic. Three hundred ninety-four consecutive patients who underwent posterior stabilization utilizing 3204 transpedicular thoracic screws by 2 surgeons from 1992 to 2002 were analyzed. The mean age was 27 + 10 years (range 5 + 3-87 + 0 years) at the time of surgery. Etiologic diagnoses were: scoliosis in 273, kyphosis in 53, other spinal disease in 68. Pedicle screws were inserted using a free hand technique similar to that used in the lumbar spine in which anatomic landmarks and specific entry sites were used to guide the surgeon. A 2-mm tip pedicle probe was carefully advanced free hand down the pedicle into the body. Careful palpation of all bony borders (floor and four pedicle walls) was performed before and after tapping. Next, the screw was placed, followed by neurophysiologic (screw stimulation with rectus abdominus muscle recording) and radiographic (anteroposterior and lateral) confirmation. An independent spine surgeon using medical records and roentgenograms taken during treatment and follow-up reviewed all the patients. The number of the screws inserted at each level were as follows (total n = 3204): T1, n = 13; T2, n = 60; T3, n = 192; T4, n = 275; T5, n = 279; T6, n = 240; T7, n = 230; T8, n = 253; T9, n = 259; T10, n = 341; T11, n = 488; T12, n = 572. Five hundred seventy-seven screws inserted into the deformed thoracic spine were randomly evaluated by thoracic computed tomography scan to assess for screw position. Thirty-six screws (6.2%) were inserted with moderate cortical perforation, which meant the central line of the pedicle screw was out of the outer cortex of the pedicle wall and included 10 screws (1.7%) that violated the medial wall. There were no screws (out of the entire study group of 3204) with any neurologic, vascular, or visceral complications with up to 10 years follow-up. The free hand technique of thoracic pedicle screw placement performed in a step-wise, consistent, and compulsive manner is an accurate, reliable, and safe method of insertion to treat a variety of spinal disorders, including spinal deformity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The accuracy of pedicle screw placement using intraoperative image guidance systems.

            Several retrospective studies have demonstrated higher accuracy rates and increased safety for navigated pedicle screw placement than for free-hand techniques; however, the accuracy differences between navigation systems has not been extensively studied. In some instances, 3D fluoroscopic navigation methods have been reported to not be more accurate than 2D navigation methods for pedicle screw placement. The authors of this study endeavored to identify if 3D fluoroscopic navigation methods resulted in a higher placement accuracy of pedicle screws.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Overview of current additive manufacturing technologies and selected applications.

              Three-dimensional printing or rapid prototyping are processes by which components are fabricated directly from computer models by selectively curing, depositing or consolidating materials in successive layers. These technologies have traditionally been limited to the fabrication of models suitable for product visualization but, over the past decade, have quickly developed into a new paradigm called additive manufacturing. We are now beginning to see additive manufacturing used for the fabrication of a range of functional end use components. In this review, we briefly discuss the evolution of additive manufacturing from its roots in accelerating product development to its proliferation into a variety of fields. Here, we focus on some of the key technologies that are advancing additive manufacturing and present some state of the art applications.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                13 July 2017
                2017
                : 5
                : e3564
                Affiliations
                [-1] Department of Spine Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Digital Orthopedic Institute, Zhejiang Spine Surgery Center , Wenzhou, Zhejiang, China
                Article
                3564
                10.7717/peerj.3564
                5511502
                63f8cb11-ef31-4810-8087-a3eb377e9350
                ©2017 Shao et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 28 March 2017
                : 20 June 2017
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81501933
                Award ID: 81572214
                Funded by: Wenzhou Science and Technology Project
                Award ID: Y20160369
                Funded by: Scientific research project for student of Wenzhou Medical University
                Award ID: WYX201401020
                Funded by: Natural Science Foundation of China Zhejiang Province
                Award ID: LY14H060008
                This work was supported by the National Natural Science Foundation of China (81501933, 81572214), Wenzhou Science and Technology Project (Y20160369), Scientific research project for student of Wenzhou Medical University (WYX201401020), Natural Science Foundation of China Zhejiang Province (LY14H060008). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Bioengineering
                Orthopedics
                Radiology and Medical Imaging
                Computational Science

                transpedicular transdiscal lumbar screw fixation,three dimensional printed template,lumbar spine,three dimensional reconstruction

                Comments

                Comment on this article