Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Luteolin, a dietary flavone, modulates various signaling pathways involved in carcinogenesis. In this study, we investigated the molecular mechanism that underlies the apoptotic effects of luteolin mediated by DNA demethylation of the nuclear factor erythroid 2-related factor 2 (Nrf2) promoter and the interaction of Nrf2 and p53, a tumor suppressor, in human colon cancer cells. Luteolin increased the expression of apoptosis-related proteins and antioxidant enzymes. In DNA methylation, luteolin inhibited the expression of DNA methyltransferases, a transcription repressor, and increased the expression and activity of ten-eleven translocation (TET) DNA demethylases, a transcription activator. Methyl-specific polymerase chain reaction and bisulfite genomic sequencing indicated that luteolin decreased the methylation of the Nrf2 promoter region, which corresponded to the increased mRNA expression of Nrf2. In addition, luteolin increased TET1 binding to the Nrf2 promoter, as determined using a chromatin immunoprecipitation (ChIP) assay. TET1 knockdown decreased the percentages of luteolin-treated cells in sub-G 1 phase and cells with fragmented nuclei. Furthermore, complex formation between p53 and Nrf2 was involved in the apoptotic effects of luteolin. These results provide insight into the mechanism that underlies the anticancer effects of luteolin on colon cancer, which involve the upregulation of Nrf2 and its interaction with the tumor suppressor.

          Cancer: Cell-killing plant compound exerts antioxidant effects

          A molecule found in fruits, vegetables and herbs helps kill colon cancer cells by activating a master regulator of detoxifying enzymes. Jin Won Hyun from Jeju National University School of Medicine in South Korea and colleagues treated human colon cancer cells with luteolin, a molecule that occurs naturally in many food plants. They showed that luteolin increased the levels of proteins involved in cell death and antioxidant responses by causing DNA-modifying enzymes to strip suppressive chemical markers off the gene encoding Nrf2, a protein that regulates antioxidant effects. Nrf2 levels subsequently increased and the protein interacted with the tumor suppressor p53 to facilitate destruction of the colon cancer cells. The findings offer a mechanistic basis for using luteolin to help prevent and treat cancer.

          Related collections

          Most cited references 42

          • Record: found
          • Abstract: found
          • Article: found

          Cancer Statistics, 2017.

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. In 2017, 1,688,780 new cancer cases and 600,920 cancer deaths are projected to occur in the United States. For all sites combined, the cancer incidence rate is 20% higher in men than in women, while the cancer death rate is 40% higher. However, sex disparities vary by cancer type. For example, thyroid cancer incidence rates are 3-fold higher in women than in men (21 vs 7 per 100,000 population), despite equivalent death rates (0.5 per 100,000 population), largely reflecting sex differences in the "epidemic of diagnosis." Over the past decade of available data, the overall cancer incidence rate (2004-2013) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2005-2014) declined by about 1.5% annually in both men and women. From 1991 to 2014, the overall cancer death rate dropped 25%, translating to approximately 2,143,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the cancer death rate was 15% higher in blacks than in whites in 2014, increasing access to care as a result of the Patient Protection and Affordable Care Act may expedite the narrowing racial gap; from 2010 to 2015, the proportion of blacks who were uninsured halved, from 21% to 11%, as it did for Hispanics (31% to 16%). Gains in coverage for traditionally underserved Americans will facilitate the broader application of existing cancer control knowledge across every segment of the population. CA Cancer J Clin 2017;67:7-30. © 2017 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype.

            Reactive oxygen species (ROS) and the coupled oxidative stress have been associated with tumor formation. Several studies suggested that ROS can act as secondary messengers and control various signaling cascades. In the present studies, we characterized the oxidative stress status in three different prostate cancer cells (PC3, DU145, and LNCaP) exhibiting various degree of aggressiveness and normal prostate cells in culture (WPMY1, RWPE1, and primary cultures of normal epithelial cells). We observed increased ROS generation in cancer cells compared with normal cells, and that extramitochondrial source of ROS generator, NAD(P)H oxidase (Nox) systems, are associated with the ROS generation and are critical for the malignant phenotype of prostate cancer cells. Moreover, diphenyliodonium, a specific Nox inhibitor, blocked proliferation, modulated the activity of growth signaling cascades extracellular signal-regulated kinase (ERK)1/ERK2 and p38 mitogen-activated protein kinase as well as AKT protein kinase B, and caused cyclin B-dependent G(2)-M cell cycle arrest. We also observed higher degrees of ROS generation in the PC3 cells than DU145 and LNCaP, and that ROS generation is critical for migratory/invasiveness phenotypes. Furthermore, blocking of the ROS production rather than ROS neutralization resulted in decreased matrix metalloproteinase 9 activity as well as loss of mitochondrial potential, plausible reasons for decreased cell invasion and increased cell death. Taken together, these studies show, for the first time, the essential role of ROS production by extramitochondrial source in prostate cancer and suggest that therapies aimed at reducing ROS production might offer effective means of combating prostate cancer in particular, and perhaps other malignancies in general.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response.

              In response to oxidative stress, Nrf2 and p21(Cip1/WAF1) are both upregulated to protect cells from oxidative damage. Nrf2 is constantly ubiquitinated by a Keap1 dimer that interacts with a weak-binding (29)DLG motif and a strong-binding (79)ETGE motif in Nrf2, resulting in degradation of Nrf2. Modification of the redox-sensitive cysteine residues on Keap1 disrupts the Keap1-(29)DLG binding, leading to diminished Nrf2 ubiquitination and activation of the antioxidant response. However, the underlying mechanism by which p21 protects cells from oxidative damage remains unclear. Here we present molecular and genetic evidence suggesting that the antioxidant function of p21 is mediated through activation of Nrf2 by stabilizing the Nrf2 protein. The (154)KRR motif in p21 directly interacts with the (29)DLG and (79)ETGE motifs in Nrf2 and thus competes with Keap1 for Nrf2 binding, compromising ubiquitination of Nrf2. Furthermore, the physiological significance of our findings was demonstrated in vivo using p21-deficient mice.
                Bookmark

                Author and article information

                Contributors
                +82-64-754-3838 , jinwonh@jejunu.ac.kr
                Journal
                Exp Mol Med
                Exp. Mol. Med
                Experimental & Molecular Medicine
                Nature Publishing Group UK (London )
                1226-3613
                2092-6413
                15 April 2019
                15 April 2019
                April 2019
                : 51
                : 4
                Affiliations
                [1 ]ISNI 0000 0001 0725 5207, GRID grid.411277.6, Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, ; Jeju, 63243 Republic of Korea
                [2 ]ISNI 0000 0001 0725 5207, GRID grid.411277.6, Laboratory of Veterinary Anatomy, College of Veterinary Medicine, , Jeju National University, ; Jeju, 63243 Republic of Korea
                [3 ]ISNI 0000 0004 0470 5112, GRID grid.411612.1, Department of Microbiology and Immunology, , Inje University College of Medicine, ; Busan, 47392 Republic of Korea
                Article
                238
                10.1038/s12276-019-0238-y
                6465248
                30988303
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003725, National Research Foundation of Korea (NRF);
                Award ID: 2017R1A4A1014512
                Award ID: 2016R1A6A3A11932235
                Award Recipient :
                Funded by: NRF-2016R1A2B4007934 NRF-2016R1A6A3A11932235
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Molecular medicine

                Comments

                Comment on this article