19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inhibition of Amazon Deforestation and Fire by Parks and Indigenous Lands : Inhibition of Amazon Deforestation and Fire

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Conservation scientists generally agree that many types of protected areas will be needed to protect tropical forests. But little is known of the comparative performance of inhabited and uninhabited reserves in slowing the most extreme form of forest disturbance: conversion to agriculture. We used satellite-based maps of land cover and fire occurrence in the Brazilian Amazon to compare the performance of large (> 10,000 ha) uninhabited (parks) and inhabited (indigenous lands, extractive reserves, and national forests) reserves. Reserves significantly reduced both deforestation and fire. Deforestation was 1.7 (extractive reserves) to 20 (parks) times higher along the outside versus the inside of the reserve perimeters and fire occurrence was 4 (indigenous lands) to 9 (national forests) times higher. No strong difference in the inhibition of deforestation (p = 0. 11) or fire (p = 0.34) was found between parks and indigenous lands. However, uninhabited reserves tended to be located away from areas of high deforestation and burning rates. In contrast, indigenous lands were often created in response to frontier expansion, and many prevented deforestation completely despite high rates of deforestation along their boundaries. The inhibitory effect of indigenous lands on deforestation was strong after centuries of contact with the national society and was not correlated with indigenous population density. Indigenous lands occupy one-fifth of the Brazilian Amazon-five times the area under protection in parks--and are currently the most important barrier to Amazon deforestation. As the protected-area network expands from 36% to 41% of the Brazilian Amazon over the coming years, the greatest challenge will be successful reserve implementation in high-risk areas of frontier expansion as indigenous lands are strengthened. This success will depend on a broad base of political support.

          Related collections

          Most cited references 1

          • Record: found
          • Abstract: found
          • Article: not found

          Deforestation control in Mato Grosso: a new model for slowing the loss of Brazil's Amazon forest.

          Controlling deforestation in Brazil's Amazon region has long been illusive despite repeated efforts of government authorities to slow the process. From 1997 to 2000, deforestation rates in Brazil's 9-state "Legal Amazon" region continually crept upward. Now, a licensing and enforcement program for clearing by large farmers and ranchers in the state of Mato Grosso appears to be having an effect. The deforestation rate in Mato Grosso was already beginning to slacken before initiation of the program in 1999, but examination of county-level data suggests that deforestation in already heavily cleared areas was falling due to lack of suitable uncleared land, while little-cleared areas were experiencing rapid deforestation. Following initiation of the program, the clearing rates declined in the recent frontiers. Areas with greater enforcement effort also appear to have experienced greater declines. Demonstration of government ability to enforce regulations and influence trends is important to domestic and international debates regarding use of avoided deforestation to mitigate global warming.
            Bookmark

            Author and article information

            Journal
            Conservation Biology
            Wiley
            08888892
            February 2006
            February 2006
            January 23 2006
            : 20
            : 1
            : 65-73
            Article
            10.1111/j.1523-1739.2006.00351.x
            16909660
            6415b833-7582-479c-8f42-32a7a88032ab
            © 2006

            Comments

            Comment on this article