35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interpenetrating polymer networks (IPNs) have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO). First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%). The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues) and migration (skin, intestine) than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          On the mechanisms of biocompatibility.

          The manner in which a mutually acceptable co-existence of biomaterials and tissues is developed and sustained has been the focus of attention in biomaterials science for many years, and forms the foundation of the subject of biocompatibility. There are many ways in which materials and tissues can be brought into contact such that this co-existence may be compromised, and the search for biomaterials that are able to provide for the best performance in devices has been based upon the understanding of all the interactions within biocompatibility phenomena. Our understanding of the mechanisms of biocompatibility has been restricted whilst the focus of attention has been long-term implantable devices. In this paper, over 50 years of experience with such devices is analysed and it is shown that, in the vast majority of circumstances, the sole requirement for biocompatibility in a medical device intended for long-term contact with the tissues of the human body is that the material shall do no harm to those tissues, achieved through chemical and biological inertness. Rarely has an attempt to introduce biological activity into a biomaterial been clinically successful in these applications. This essay then turns its attention to the use of biomaterials in tissue engineering, sophisticated cell, drug and gene delivery systems and applications in biotechnology, and shows that here the need for specific and direct interactions between biomaterials and tissue components has become necessary, and with this a new paradigm for biocompatibility has emerged. It is believed that once the need for this change is recognised, so our understanding of the mechanisms of biocompatibility will markedly improve.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Designing cell-compatible hydrogels for biomedical applications.

            Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. They can be engineered to resemble the extracellular environment of the body's tissues in ways that enable their use in medical implants, biosensors, and drug-delivery devices. Cell-compatible hydrogels are designed by using a strategy of coordinated control over physical properties and bioactivity to influence specific interactions with cellular systems, including spatial and temporal patterns of biochemical and biomechanical cues known to modulate cell behavior. Important new discoveries in stem cell research, cancer biology, and cellular morphogenesis have been realized with model hydrogel systems premised on these designs. Basic and clinical applications for hydrogels in cell therapy, tissue engineering, and biomedical research continue to drive design improvements using performance-based materials engineering paradigms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles.

              Albumin is playing an increasing role as a drug carrier in the clinical setting. Principally, three drug delivery technologies can be distinguished: coupling of low-molecular weight drugs to exogenous or endogenous albumin, conjugation with bioactive proteins and encapsulation of drugs into albumin nanoparticles. The accumulation of albumin in solid tumors forms the rationale for developing albumin-based drug delivery systems for tumor targeting. Clinically, a methotrexate-albumin conjugate, an albumin-binding prodrug of doxorubicin, i.e. the (6-maleimido)caproylhydrazone derivative of doxorubicin (DOXO-EMCH), and an albumin paclitaxel nanoparticle (Abraxane) have been evaluated clinically. Abraxane has been approved for treating metastatic breast cancer. An alternative strategy is to bind a therapeutic peptide or protein covalently or physically to albumin to enhance its stability and half-life. This approach has been applied to peptides with antinociceptive, antidiabetes, antitumor or antiviral activity: Levemir, a myristic acid derivative of insulin that binds to the fatty acid binding sites of circulating albumin, has been approved for the treatment of diabetes. Furthermore, Albuferon, a fusion protein of albumin and interferon, is currently being assessed in phase III clinical trials for the treatment of hepatitis C and could become an alternative to pegylated interferon. This review gives an account of the different drug delivery systems which make use of albumin as a drug carrier with a focus on those systems that have reached an advanced stage of preclinical evaluation or that have entered clinical trials.
                Bookmark

                Author and article information

                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                10 December 2017
                December 2017
                : 7
                : 12
                : 436
                Affiliations
                [1 ]Laboratoire de BioMécanique et de BioIngénierie (BMBI) UMR CNRS 7388, Sorbonne Universités, Université de Technologie of Compiègne (UTC), 60200 Compiègne, France; olfat.gsib@ 123456gmail.com (O.G.); jlcalanq@ 123456gmail.com (J.-L.D.)
                [2 ]Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (Errmece), Institut des Matériaux, Université de Cergy-Pontoise, 95000 Cergy-Pontoise, France; mathieu.goczkowski@ 123456gmail.com (M.G.); mdeneufchatel@ 123456gmail.com (M.D.); veronique.larreta-garde@ 123456u-cergy.fr (V.L.-G.)
                [3 ]Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI), Institut des Matériaux, Université de Cergy-Pontoise, 95000 Cergy-Pontoise, France; odile.fichet@ 123456u-cergy.fr
                [4 ]School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
                [5 ]Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02215, USA
                Author notes
                [* ]Correspondence: s.bencherif@ 123456northeastern.edu (S.A.B.); christophe.egles@ 123456utc.fr (C.E.); Tel.: +1-617-373-7103 (S.A.B.); +33-(0)3-44-23-44-22 (C.E.)
                Author information
                https://orcid.org/0000-0002-7704-5608
                https://orcid.org/0000-0003-0982-7752
                Article
                nanomaterials-07-00436
                10.3390/nano7120436
                5746926
                29232876
                641e9b27-80cc-4175-869a-6f5d49001a6d
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 October 2017
                : 05 December 2017
                Categories
                Article

                interpenetrating polymer networks,fibrin,polyethylene oxide,serum albumin,fibrous hydrogel,biocompatibility,organotypic culture,tissue engineering,biomaterials

                Comments

                Comment on this article