387
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intracameral dexamethasone injection in the treatment of cataract surgery induced inflammation: design, development, and place in therapy

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cataract surgery is one of the most commonly performed surgeries worldwide, with nearly 20 million cases annually. Appropriate prophylaxis after cataract surgery can contribute to a safe and quick visual recovery with high patient satisfaction. Despite being the current standard of care, the use of multiple postoperative eye drops can create a significant burden on these patients, contributing to documented and significant non-adherence to the postoperative regimen. Over the past 25 years, there have been a few studies analyzing the use of intracameral dexamethasone (DXM) in controlling inflammation following cataract surgery. This review explores various drug delivery approaches for managing intraocular inflammation after cataract surgery, documenting the strengths and weaknesses of these options and examining the role of intracameral DXM (among these other strategies) in controlling postoperative intraocular inflammation. Intracameral DXM has a particular advantage over topical steroids in possibly decreasing postoperative inflammatory symptoms and objective anterior cell and flare scores. Compared to topical steroids, there may be a slightly less theoretical risk of significant intraocular pressure spikes and systemic absorption. In addition, surveys indicate patients prefer an intraoperative intracameral injection over a self-administered postoperative eye drop regimen. However, there are several adverse effects associated with intracameral DXM delivery that are not seen with the noninvasive topical approach. Although it is unlikely that intracameral DXM will replace topical medications as the standard management for postoperative inflammation, it is seemingly another safe and effective strategy for controlling postoperative inflammation after routine cataract surgery.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Global data on visual impairment in the year 2002.

          This paper presents estimates of the prevalence of visual impairment and its causes in 2002, based on the best available evidence derived from recent studies. Estimates were determined from data on low vision and blindness as defined in the International statistical classification of diseases, injuries and causes of death, 10th revision. The number of people with visual impairment worldwide in 2002 was in excess of 161 million, of whom about 37 million were blind. The burden of visual impairment is not distributed uniformly throughout the world: the least developed regions carry the largest share. Visual impairment is also unequally distributed across age groups, being largely confined to adults 50 years of age and older. A distribution imbalance is also found with regard to gender throughout the world: females have a significantly higher risk of having visual impairment than males. Notwithstanding the progress in surgical intervention that has been made in many countries over the last few decades, cataract remains the leading cause of visual impairment in all regions of the world, except in the most developed countries. Other major causes of visual impairment are, in order of importance, glaucoma, age-related macular degeneration, diabetic retinopathy and trachoma.
            • Record: found
            • Abstract: found
            • Article: not found

            Causes and prevalence of visual impairment among adults in the United States.

            To estimate the cause-specific prevalence and distribution of blindness and low vision in the United States by age, race/ethnicity, and gender, and to estimate the change in these prevalence figures over the next 20 years. Summary prevalence estimates of blindness (both according to the US definition of < or =6/60 [< or =20/200] best-corrected visual acuity in the better-seeing eye and the World Health Organization standard of < 6/120 [< 20/400]) and low vision (< 6/12 [< 20/40] best-corrected vision in the better-seeing eye) were prepared separately for black, Hispanic, and white persons in 5-year age intervals starting at 40 years. The estimated prevalences were based on recent population-based studies in the United States, Australia, and Europe. These estimates were applied to 2000 US Census data, and to projected US population figures for 2020, to estimate the number of Americans with visual impairment. Cause-specific prevalences of blindness and low vision were also estimated for the different racial/ethnic groups. Based on demographics from the 2000 US Census, an estimated 937 000 (0.78%) Americans older than 40 years were blind (US definition). An additional 2.4 million Americans (1.98%) had low vision. The leading cause of blindness among white persons was age-related macular degeneration (54.4% of the cases), while among black persons, cataract and glaucoma accounted for more than 60% of blindness. Cataract was the leading cause of low vision, responsible for approximately 50% of bilateral vision worse than 6/12 (20/40) among white, black, and Hispanic persons. The number of blind persons in the US is projected to increase by 70% to 1.6 million by 2020, with a similar rise projected for low vision. Blindness or low vision affects approximately 1 in 28 Americans older than 40 years. The specific causes of visual impairment, and especially blindness, vary greatly by race/ethnicity. The prevalence of visual disabilities will increase markedly during the next 20 years, owing largely to the aging of the US population.
              • Record: found
              • Abstract: found
              • Article: not found

              Ocular drug delivery.

              Ocular drug delivery has been a major challenge to pharmacologists and drug delivery scientists due to its unique anatomy and physiology. Static barriers (different layers of cornea, sclera, and retina including blood aqueous and blood-retinal barriers), dynamic barriers (choroidal and conjunctival blood flow, lymphatic clearance, and tear dilution), and efflux pumps in conjunction pose a significant challenge for delivery of a drug alone or in a dosage form, especially to the posterior segment. Identification of influx transporters on various ocular tissues and designing a transporter-targeted delivery of a parent drug has gathered momentum in recent years. Parallelly, colloidal dosage forms such as nanoparticles, nanomicelles, liposomes, and microemulsions have been widely explored to overcome various static and dynamic barriers. Novel drug delivery strategies such as bioadhesive gels and fibrin sealant-based approaches were developed to sustain drug levels at the target site. Designing noninvasive sustained drug delivery systems and exploring the feasibility of topical application to deliver drugs to the posterior segment may drastically improve drug delivery in the years to come. Current developments in the field of ophthalmic drug delivery promise a significant improvement in overcoming the challenges posed by various anterior and posterior segment diseases.

                Author and article information

                Journal
                Clin Ophthalmol
                Clin Ophthalmol
                Clinical Ophthalmology
                Clinical Ophthalmology (Auckland, N.Z.)
                Dove Medical Press
                1177-5467
                1177-5483
                2018
                01 November 2018
                : 12
                : 2223-2235
                Affiliations
                [1 ]Department of Ophthalmology, University of Arizona College of Medicine, Phoenix, Arizona, USA, gpeyman1@ 123456yahoo.com
                [2 ]Department of Ophthalmology, Tulane University College of Medicine, New Orleans, Louisiana, USA, gpeyman1@ 123456yahoo.com
                Author notes
                Correspondence: Gholam A Peyman, Department of Ophthalmology, University of Arizona College of Medicine Phoenix Campus, 10650 W, Tropicana Circle, Sun City, AZ 85351, USA, Tel +1 623 760 7166, Email gpeyman1@ 123456yahoo.com
                Article
                opth-12-2223
                10.2147/OPTH.S165722
                6219274
                30464383
                6423f5d5-1d24-4d1e-a743-f69d4473e303
                © 2018 Shah et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed

                History
                Categories
                Review

                Ophthalmology & Optometry
                intracameral dexamethasone,intraocular steroids,cataract surgery,inflammation,topical steroids,dexycu®,surodex®,intraocular pressure cataract surgery

                Comments

                Comment on this article

                Related Documents Log