1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Future projections of temperature and mixing regime of European temperate lakes

      , ,
      Hydrology and Earth System Sciences Discussions
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> The physical response of lakes to climate warming is regionally variable and highly dependent on individual lake characteristics, making generalisations about their development difficult. To qualify the role of individual lake characteristics in their response to regionally homogeneous warming, we simulated temperature, ice cover and mixing in four intensively studied German lakes of varying morphology and mixing regime with a one-dimensional lake model. We forced the model with an ensemble of 12 climate projections (RCP4.5) up to 2100. The lakes were projected to warm at 0.10–0.11 °C decade<sup>&amp;minus;1</sup>, which is 75–90 % of the projected air temperature trend. In simulations, surface temperatures increased strongly in winter and spring, but little or not at all in summer and autumn. Mean bottom temperatures were projected to increase in all lakes, with steeper trends in winter and in shallower lakes. Modelled ice thaw and summer stratification advanced by 1.5–2.2 and 1.4–1.8 d decade<sup>&amp;minus;1</sup> respectively, whereas autumn turnover and winter freeze timing was less sensitive. The projected summer mixed layer depth was unaffected by warming but sensitive to changes in water transparency. By mid-century, the frequency of ice and stratification-free winters was projected to increase by about 20 %, making ice cover rare and shifting the two deeper dimictic lakes to a predominantly monomictic regime. The polymictic lake was unlikely to become dimictic by the end of the century. A sensitivity analysis predicted that decreasing transparency would dampen the effect of warming on mean temperature but amplify its effect on stratification. However, this interaction was only predicted to occur in clear lakes, and not in the study lakes at their historical transparency. Not only lake morphology, but also mixing regime determines how heat is stored and ultimately how lakes respond to climate warming. Seasonal differences in climate warming rates are thus important and require more attention.</p>

          Related collections

          Author and article information

          Journal
          Hydrology and Earth System Sciences Discussions
          Hydrol. Earth Syst. Sci. Discuss.
          Copernicus GmbH
          1812-2116
          November 26 2018
          : 1-34
          Article
          10.5194/hess-2018-588
          642ccab4-5e87-4cb6-a99a-6cac882fb4c7
          © 2018

          https://creativecommons.org/licenses/by/4.0/

          History

          Comments

          Comment on this article