3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-92a Family: A Novel Diagnostic Biomarker and Potential Therapeutic Target in Human Cancers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose: This study tried to explore whether members of miR-92a family contribute to early diagnosis and prognosis for human cancers and how they work.

          Methods: Integrated meta-analysis retrieved from public repositories was employed to assess the clinical roles of the miR-92a family for cancer diagnosis and prognosis. Expression level of miR-92a was detected by the TCGA database and was confirmed by non-small-cell lung cancer (NSCLC) tissues. Targets of miR-92a were predicted using starbase, and validated by dual luciferase assay. Correlation between miR-92a and the target gene was assessed by linkedOmics while expression of the target gene and its role in cancer prognosis were analyzed with UALCAN and Gepia.

          Results: We recognized the miR-92a family could serve as a potential diagnostic biomarker with a pooled sensitivity of 0.85 [0.81–0.88] and specificity of 0.86 [0.83–0.90]. The overall hazard ratio (HR) was 2.26 [95% CI: 1.70–3.00] for high expression groups compared to low expression groups. Expression of miR-92a was identified to be upregulated in NSCLC, especially in lung squamous cell carcinoma (LUSC). Results from starbase and dual luciferase assay indicated the regulator of G-protein signaling 3 (RGS3) was a direct target of miR-92a. Statistical negative correlation was found for the expression of miR-92a and RGS3. In addition, expression of RGS3 was downregulated in NSCLC and patients with the high expression had a poor prognosis (HR = 1.3) for LUSC patients. However, results were to the contrary for lung adenocarcinoma (HR = 0.7).

          Conclusion: This study revealed that miR-92a family could be ideal biomarkers for cancer diagnosis and prognosis, which might function through targeting RGS3.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer

          microRNAs (miRNAs) play integral roles in diverse processes including tumorigenesis. miRNA gene loci are often found in close conjunction, and such clustered miRNA genes are transcribed from a common promoter to generate polycistronic primary transcript. The primary transcript (pri-miRNA) is then processed by two RNase III proteins to release the mature miRNAs. Although it has been speculated that the miRNAs in the same cluster may play related biological functions, this has not been experimentally addressed. Here we report that the miRNAs in two clusters (miR-106b∼93 ∼ 25 and miR-222 ∼ 221) suppress the Cip/Kip family members of Cdk inhibitors (p57Kip2, p21Cip1 and p27Kip1). We show that miR-25 targets p57 through the 3′-UTR. Furthermore, miR-106b and miR-93 control p21 while miR-222 and miR-221 regulate both p27 and p57. Ectopic expression of these miRNAs results in activation of Cdk2 and facilitation of G1/S phase transition. Consistent with these results, both clusters are abnormally upregulated in gastric cancer tissues compared to the corresponding normal tissues. Ectopic expression of miR-222 cluster enhanced tumor growth in the mouse xenograft model. Our study demonstrates the functional associations between clustered miRNAs and further implicates that effective cancer treatment may require a combinatorial approach to target multiple oncogenic miRNA clusters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer

            Background: Circulating microRNAs (miRNAs) have been implicated as novel biomarkers for gastric cancer (GC) diagnosis. However, the mixture of GC subtypes may have led to the inconsistent circulating miRNA profiles, and the clinical performance of circulating miRNAs has not yet been evaluated independently on early detection of GC. Methods: A four-phase study was designed with a total of 160 cancer-free controls, 124 patients with gastric non-cardia adenocarcinoma (GNCA) and 36 patients diagnosed gastric cardia adenocarcinoma (GCA). In the discovery phase, we screened the miRNA expression profile in plasma of 40 GNCA patients (stage I) and 40 matched controls by TaqMan low density array (TLDA) chips with pooled samples. Differentially expressed miRNAs were further validated in individual sample using quantitative reverse-transcriptase PCR (qRT–PCR) in the training phase. Subsequently, in an independent validation phase, the identified miRNAs were evaluated in 48 GNCA patients (stage I) and 102 matched controls. Finally, the identified miRNAs were further assessed in an external validation phase including advanced GNCA and GCA patients. Additionally, the expression levels of identified miRNAs were measured in the media of BGC823 and MGC803 cell lines. Results: Five miRNAs (miR-16, miR-25, miR-92a, miR-451 and miR-486-5p) showed consistently elevated levels in plasma of the GC patients as compared with controls, and were identified to be potential markers for GNCA with area under the receiver operating characteristic (ROC) curves (AUCs) ranging from 0.850 to 0.925 and 0.694 to 0.790 in the training and validation phases, respectively. The five-miRNA panel presented a high diagnostic accuracy for the early-stage GNCA (AUCs=0.989 and 0.812 for the training and validation phases, respectively). Three miRNAs (miR-16, miR-25 and miR-92a) were excreted into the culture media of GC cell lines. Conclusions: The five-miRNA panel in plasma may serve as a potential non-invasive biomarker in detecting the early-stage GC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Non-coding RNAs in cancer initiation and progression and as novel biomarkers.

              Cancer represents a complex group of heterogeneous diseases. While many cancers share fundamental biological processes (hallmarks of cancer) necessary for their development and progression, cancers also distinguish themselves by their dependence on distinct oncogenic pathways. Over the last decade, targeted therapies have been introduced to the clinic with variable success. In truth, single targeted therapies may be successful in only a subset of malignancies but insufficient to address malignancies that often rely on multiple pathways, thus evading single targeted agents. Investigators have recently identified potentially functional components of the human genome that were previously thought to have no biological function. This discovery has added to the already established complexity of gene regulation in the pathogenesis of cancer. Non-coding RNAs represent key regulators of gene expression. Improved knowledge of their biogenesis and function may in turn lead to a better understanding of the heterogeneity of malignancies and eventually be leveraged as diagnostic, prognostic and therapeutic targets. MicroRNAs (miRNAs or miRs) for example, have the capacity for the regulation of multiple genes and thus redirection or reprogramming of biological pathways. However, several other members of the non-coding RNA family may be of equal biological relevance. In this review, we provide a perspective on emerging concepts in the clinical application of miRNA and other non-coding RNAs as biomarkers in cancer with an eye on the eventual integration of both miRNA and other non-coding RNA biology into our understanding of cancer pathogenesis and treatment. Copyright © 2011. Published by Elsevier B.V.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Biosci
                Front Mol Biosci
                Front. Mol. Biosci.
                Frontiers in Molecular Biosciences
                Frontiers Media S.A.
                2296-889X
                01 October 2019
                2019
                : 6
                : 98
                Affiliations
                Department of Epidemiology, School of Public Health, China Medical University , Shenyang, China
                Author notes

                Edited by: Sanjeev Kumar Srivastava, Mitchell Cancer Institute, United States

                Reviewed by: Manoj N. Sonavane, University of South Alabama, United States; Nishant Singh, University of Pittsburgh, United States

                *Correspondence: Baosen Zhou bszhou@ 123456cmu.edu.cn

                This article was submitted to Molecular Diagnostics and Therapeutics, a section of the journal Frontiers in Molecular Biosciences

                Article
                10.3389/fmolb.2019.00098
                6779690
                31632984
                6432d408-9cfa-491f-816d-cfcb65cfcffd
                Copyright © 2019 Jiang, Li, Quan, Li and Zhou.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 July 2019
                : 11 September 2019
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 44, Pages: 12, Words: 6546
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81502878
                Award ID: 81773524
                Categories
                Molecular Biosciences
                Original Research

                mir-92a,rgs3,neoplasms,diagnosis,prognosis
                mir-92a, rgs3, neoplasms, diagnosis, prognosis

                Comments

                Comment on this article