19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Supramolecular dendritic liquid quasicrystals.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A large number of synthetic and natural compounds self-organize into bulk phases exhibiting periodicities on the 10(-8)-10(-6) metre scale as a consequence of their molecular shape, degree of amphiphilic character and, often, the presence of additional non-covalent interactions. Such phases are found in lyotropic systems (for example, lipid-water, soap-water), in a range of block copolymers and in thermotropic (solvent-free) liquid crystals. The resulting periodicity can be one-dimensional (lamellar phases), two-dimensional (columnar phases) or three dimensional ('micellar' or 'bicontinuous' phases). All such two- and three-dimensional structures identified to date obey the rules of crystallography and their symmetry can be described, respectively, by one of the 17 plane groups or 230 space groups. The 'micellar' phases have crystallographic counterparts in transition-metal alloys, where just one metal atom is equivalent to a 10(3)-10(4)-atom micelle. However, some metal alloys are known to defy the rules of crystallography and form so-called quasicrystals, which have rotational symmetry other than the allowed two-, three-, four- or six-fold symmetry. Here we show that such quasiperiodic structures can also exist in the scaled-up micellar phases, representing a new mode of organization in soft matter.

          Related collections

          Author and article information

          Journal
          Nature
          Nature
          1476-4687
          0028-0836
          Mar 11 2004
          : 428
          : 6979
          Affiliations
          [1 ] Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, UK.
          Article
          nature02368
          10.1038/nature02368
          15014524
          643454b2-262f-4f91-8f92-6bedbef9840c
          History

          Comments

          Comment on this article