70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acute Multiple Organ Failure in Adult Mice Deleted for the Developmental Regulator Wt1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal–epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT) that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1) suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2) highlight the differences between foetal and adult tissue regulation; 3) point to the importance of adult mesenchyme in tissue turnover.

          Author Summary

          It is important to understand the cellular and molecular pathways that regulate the maintenance and turnover of adult tissues. These processes often go awry in diseases and are likely to deteriorate with ageing. Here we show that removal of a single gene, the Wilms' Tumour gene, Wt1, in the adult mouse leads to the extremely rapid deterioration of multiple tissues. Within 7–9 days after gene removal kidneys fail, the pancreas and spleen suffer severe atrophy, there is widespread loss of bone and body fat, and red blood cells are no longer produced. Our findings reveal the vulnerability of adult tissues, while opening up avenues for dissecting the pathways controlling tissue turnover. Further experiments showed that the tissue failure we observed is due both to local defects of stem/progenitor cell activities and to significant changes in the serum levels of some key master regulators. In particular there is a dramatic reduction in the levels of IGF-1, a key regulator of homeostasis and aging. Our studies also show that the control of adult tissue turnover may be different from that during foetal development. These findings have important implications for understanding and treating common human diseases.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment.

          The identity of cells that establish the hematopoietic microenvironment (HME) in human bone marrow (BM), and of clonogenic skeletal progenitors found in BM stroma, has long remained elusive. We show that MCAM/CD146-expressing, subendothelial cells in human BM stroma are capable of transferring, upon transplantation, the HME to heterotopic sites, coincident with the establishment of identical subendothelial cells within a miniature bone organ. Establishment of subendothelial stromal cells in developing heterotopic BM in vivo occurs via specific, dynamic interactions with developing sinusoids. Subendothelial stromal cells residing on the sinusoidal wall are major producers of Angiopoietin-1 (a pivotal molecule of the HSC "niche" involved in vascular remodeling). Our data reveal the functional relationships between establishment of the HME in vivo, establishment of skeletal progenitors in BM sinusoids, and angiogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            WT-1 is required for early kidney development.

            In humans, germline mutations of the WT-1 tumor suppressor gene are associated with both Wilms' tumors and urogenital malformations. To develop a model system for the molecular analysis of urogenital development, we introduced a mutation into the murine WT-1 tumor suppressor gene by gene targeting in embryonic stem cells. The mutation resulted in embryonic lethality in homozygotes, and examination of mutant embryos revealed a failure of kidney and gonad development. Specifically, at day 11 of gestation, the cells of the metanephric blastema underwent apoptosis, the ureteric bud failed to grow out from the Wolffian duct, and the inductive events that lead to formation of the metanephric kidney did not occur. In addition, the mutation caused abnormal development of the mesothelium, heart, and lungs. Our results establish a crucial role for WT-1 in early urogenital development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy.

              The major myeloid blood cell lineages are generated from hematopoietic stem cells by differentiation through a series of increasingly committed progenitor cells. Precise characterization of intermediate progenitors is important for understanding fundamental differentiation processes and a variety of disease states, including leukemia. Here, we evaluated the functional in vitro and in vivo potentials of a range of prospectively isolated myeloid precursors with differential expression of CD150, Endoglin, and CD41. Our studies revealed a hierarchy of myeloerythroid progenitors with distinct lineage potentials. The global gene expression signatures of these subsets were consistent with their functional capacities, and hierarchical clustering analysis suggested likely lineage relationships. These studies provide valuable tools for understanding myeloid lineage commitment, including isolation of an early erythroid-restricted precursor, and add to existing models of hematopoietic differentiation by suggesting that progenitors of the innate and adaptive immune system can separate late, following the divergence of megakaryocytic/erythroid potential.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                December 2011
                December 2011
                22 December 2011
                : 7
                : 12
                : e1002404
                Affiliations
                [1 ]Medical Research Council Human Genetics Unit and the Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
                [2 ]Queen's Medical Research Institute, Edinburgh, United Kingdom
                [3 ]Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
                [4 ]Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
                [5 ]Institute of Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, Edinburgh, United Kingdom
                [6 ]The Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
                [7 ]Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
                [8 ]Scottish National Blood Transfusion Service, Centre for Regenerative Medicine, Edinburgh, United Kingdom
                [9 ]Molecular Medicine Centre and the Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
                University of Oxford, United Kingdom
                Author notes

                Conceived and designed the experiments: Y-YC NH KS RvH NB-V. Performed the experiments: Y-YC DB HM EF DS NM AT RB RvH NB-V. Analyzed the data: Y-YC NH DB KS EF W-CL RvF NM DS NB-V CN SEJ. Contributed reagents/materials/analysis tools: Y-YC PP NM EF KS RvH NB-V CN. Wrote the paper: Y-YC NH RvH. Maintained the animal colony: PH.

                Article
                PGENETICS-D-11-00778
                10.1371/journal.pgen.1002404
                3245305
                22216009
                6436aa47-9098-47b1-915c-8c8089d8ae3e
                Chau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 April 2011
                : 17 October 2011
                Page count
                Pages: 16
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Developmental Biology
                Genetics
                Histology
                Immunology
                Model Organisms
                Molecular Cell Biology
                Proteomics

                Genetics
                Genetics

                Comments

                Comment on this article