18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design of Potent and Controllable Anticoagulants Using DNA Aptamers and Nanostructures

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The regulation of thrombin activity offers an opportunity to regulate blood clotting because of the central role played by this molecule in the coagulation cascade. Thrombin-binding DNA aptamers have been used to inhibit thrombin activity. In the past, to address the low efficacy reported for these aptamers during clinical trials, multiple aptamers have been linked using DNA nanostructures. Here, we modify that strategy by linking multiple copies of various thrombin-binding aptamers using DNA weave tiles. The resulting constructs have very high anticoagulant activity in functional assays owing to their improved cooperative binding affinity to thrombin due to optimized spacing, orientation, and the high local concentration of aptamers. We also report the results of molecular dynamics simulations to gain insight into the solution conformations of the tiles. Moreover, by using DNA strand displacement, we were able to turn the coagulation cascade off and on as desired, thereby enabling significantly better control over blood coagulation.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Conformational analysis of nucleic acids revisited: Curves+

          We describe Curves+, a new nucleic acid conformational analysis program which is applicable to a wide range of nucleic acid structures, including those with up to four strands and with either canonical or modified bases and backbones. The program is algorithmically simpler and computationally much faster than the earlier Curves approach, although it still provides both helical and backbone parameters, including a curvilinear axis and parameters relating the position of the bases to this axis. It additionally provides a full analysis of groove widths and depths. Curves+ can also be used to analyse molecular dynamics trajectories. With the help of the accompanying program Canal, it is possible to produce a variety of graphical output including parameter variations along a given structure and time series or histograms of parameter variations during dynamics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Frontiers in molecular dynamics simulations of DNA.

            It has been known for decades that DNA is extremely flexible and polymorphic, but our knowledge of its accessible conformational space remains limited. Structural data, primarily from X-ray diffraction studies, is sparse in comparison to the manifold configurations possible, and direct experimental examinations of DNA's flexibility still suffer from many limitations. In the face of these shortcomings, molecular dynamics (MD) is now an essential tool in the study of DNA. It affords detailed structural and dynamical insights, which explains its recent transition from a small number of highly specialized laboratories to a large variety of groups dealing with challenging biological problems. MD is now making an irreversible journey to the mainstream of research in biology, with the attendant opportunities and challenges. But given the speed with which MD studies of DNA have spread, the roots remain somewhat shallow: in many cases, there is a lack of deep knowledge about the foundations, strengths, and limits of the technique. In this Account, we discuss how MD has become the most important source of structural and flexibility data on DNA, focusing on advances since 2007 of atomistic MD in the description of DNA under near-physiological conditions and highlighting the possibilities and shortcomings of the technique. The evolution in the field over the past four years is a prelude to the ongoing revolution. The technique has gained in robustness and predictive power, which when coupled with the spectacular improvements in software and hardware has enabled the tackling of systems of increasing complexity. Simulation times of microseconds have now been achieved, with even longer times when specialized hardware is used. As a result, we have seen the first real-time simulation of large conformational transitions, including folding and unfolding of short DNA duplexes. Noteworthy advances have also been made in the study of DNA-ligand interactions, and we predict that a global thermodynamic and kinetic picture of the binding landscape of DNA will become available in a few years. MD will become a crucial tool in areas such as biomolecular engineering and synthetic biology. MD has also been shown to be an excellent source of parameters for mesoscopic models of DNA flexibility. Such models can be refined through atomistic MD simulations on small duplexes and then applied to the study of entire chromosomes. Recent evidence suggests that MD-derived elastic models can successfully predict the position of regulatory regions in DNA and can help advance our understanding of nucleosome positioning and chromatin plasticity. If these results are confirmed, MD simulations can become the ultimate tool to decipher a physical code that can contribute to gene regulation. We are entering the golden age of MD simulations of DNA. Undoubtedly, the expectations are high, but the challenges are also enormous. These include the need for more accurate potential energy functionals and for longer and more complex simulations in more realistic systems. The joint research effort of several groups will be crucial for adapting the technique to the requirements of the coming decade.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity.

              The potency of cancer immunotherapy can be enhanced by administration of high-avidity ligands specific to receptors expressed on T cells. Antibodies or cytokines are the main agents used in such capacity. Antibody-mediated inhibition of cytotoxic T cell antigen-4 (CTLA-4) function in mice augments antitumor immunity and could serve as an important adjunct in cancer immunotherapy. However, antibody-based therapy used in the setting of chronic diseases such as cancer poses significant cost, manufacturing, and regulatory challenges. Here we describe the development of RNA aptamers that bind CTLA-4 with high affinity and specificity. These aptamers inhibit CTLA-4 function in vitro and enhance tumor immunity in mice. Moreover, assembly of the aptamers into tetrameric forms significantly enhances their bioactivity in vitro and in vivo. These results demonstrate that aptamers can be used to manipulate the immune system for therapeutic applications and that multivalent versions of aptamers may be particularly potent agents in vivo.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                06 February 2016
                February 2016
                : 21
                : 2
                : 202
                Affiliations
                [1 ]Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695, USA; abhi1jit@ 123456gmail.com (A.R.); janash@ 123456ncsu.edu (J.A.N.); yara_yingling@ 123456ncsu.edu (Y.G.Y.)
                [2 ]Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; bgoodfred@ 123456gmail.com
                Author notes
                [* ]Correspondence: thlabean@ 123456ncsu.edu ; Tel.: +1-919-515-2204
                [†]

                Present address: Department of Chemistry, College of Science, Marshall University, Huntington, WV 25755, USA.

                Article
                molecules-21-00202
                10.3390/molecules21020202
                6273181
                26861277
                6444ac9f-ec2b-4c8b-98f3-92be710df9fa
                © 2016 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 December 2015
                : 03 February 2016
                Categories
                Article

                thrombin,dna aptamers,anticoagulation,dna nanotechnology

                Comments

                Comment on this article