146
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Universal Features of Post-Transcriptional Gene Regulation Are Critical for Plasmodium Zygote Development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A universal feature of metazoan sexual development is the generation of oocyte P granules that withhold certain mRNA species from translation to provide coding potential for proteins during early post-fertilization development. Stabilisation of translationally quiescent mRNA pools in female Plasmodium gametocytes depends on the RNA helicase DOZI, but the molecular machinery involved in the silencing of transcripts in these protozoans is unknown. Using affinity purification coupled with mass-spectrometric analysis we identify a messenger ribonucleoprotein (mRNP) from Plasmodium berghei gametocytes defined by DOZI and the Sm-like factor CITH (homolog of worm CAR- I and fly Trailer Hitch). This mRNP includes 16 major factors, including proteins with homologies to components of metazoan P granules and archaeal proteins. Containing translationally silent transcripts, this mRNP integrates eIF4E and poly(A)-binding protein but excludes P body RNA degradation factors and translation-initiation promoting eIF4G. Gene deletion mutants of 2 core components of this mRNP (DOZI and CITH) are fertilization-competent, but zygotes fail to develop into ookinetes in a female gametocyte-mutant fashion. Through RNA-immunoprecipitation and global expression profiling of CITH-KO mutants we highlight CITH as a crucial repressor of maternally supplied mRNAs. Our data define Plasmodium P granules as an ancient mRNP whose protein core has remained evolutionarily conserved from single-cell organisms to germ cells of multi-cellular animals and stores translationally silent mRNAs that are critical for early post-fertilization development during the initial stages of mosquito infection. Therefore, translational repression may offer avenues as a target for the generation of transmission blocking strategies and contribute to limiting the spread of malaria.

          Author Summary

          Transmission of malaria relies on ingestion of male and female sexual precursor cells (gametocytes) from the human host by the mosquito vector. Fertilization results in the formation of a diploid zygote that transforms into the ookinete, the motile form of the parasite that is capable of escaping the hostile mosquito midgut environment and truly infecting the mosquito vector. The developmental program of the Plasmodium zygote depends on the availability of mRNA pools transcribed and stored, but not translated, in the female gametocyte. Here we identify the core protein factors that co-operate in the assembly of mRNAs into a translationally silent ribonucleoprotein complex. In the absence of either DOZI or CITH—two key molecules within this complex—gametocytes suffer large scale mRNA de-stabilization that does not affect fertilization but culminates in the abortion of ookinete development soon after zygote formation. We characterize large scale, evolutionarily ancient translational silencing as a principal regulatory element during Plasmodium sexual development.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Stress granules: the Tao of RNA triage.

          Cytoplasmic RNA structures such as stress granules (SGs) and processing bodies (PBs) are functional byproducts of mRNA metabolism, sharing substrate mRNA, dynamic properties and many proteins, but also housing separate components and performing independent functions. Each can exist independently, but when coordinately induced they are often tethered together in a cytosolic dance. Although both self-assemble in response to stress-induced perturbations in translation, several recent reports reveal novel proteins and RNAs that are components of these structures but also perform other cellular functions. Proteins that mediate splicing, transcription, adhesion, signaling and development are all integrated with SG and PB assembly. Thus, these ephemeral bodies represent more than just the dynamic sorting of mRNA between translation and decay.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            P bodies and the control of mRNA translation and degradation.

            Recent results indicate that many untranslating mRNAs in somatic eukaryotic cells assemble into related mRNPs that accumulate in specific cytoplasmic foci referred to as P bodies. Transcripts associated with P body components can either be degraded or return to translation. Moreover, P bodies are also biochemically and functionally related to some maternal and neuronal mRNA granules. This suggests an emerging model of cytoplasmic mRNA function in which the rates of translation and degradation of mRNAs are influenced by a dynamic equilibrium between polysomes and the mRNPs seen in P bodies. Moreover, some mRNA-specific regulatory factors, including miRNAs and RISC, appear to repress translation and promote decay by recruiting P body components to individual mRNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses.

              Plasmodium berghei and Plasmodium chabaudi are widely used model malaria species. Comparison of their genomes, integrated with proteomic and microarray data, with the genomes of Plasmodium falciparum and Plasmodium yoelii revealed a conserved core of 4500 Plasmodium genes in the central regions of the 14 chromosomes and highlighted genes evolving rapidly because of stage-specific selective pressures. Four strategies for gene expression are apparent during the parasites' life cycle: (i) housekeeping; (ii) host-related; (iii) strategy-specific related to invasion, asexual replication, and sexual development; and (iv) stage-specific. We observed posttranscriptional gene silencing through translational repression of messenger RNA during sexual development, and a 47-base 3' untranslated region motif is implicated in this process.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                February 2010
                February 2010
                12 February 2010
                : 6
                : 2
                : e1000767
                Affiliations
                [1 ]Leiden Malaria Research Group, Department of Parasitology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
                [2 ]Instituto de Medicina Molecular, Unidade de Parasitologia Molecular, Lisboa, Portugal
                [3 ]Centre for Molecular and Biomolecular Informatics, NCMLS, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
                [4 ]W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
                [5 ]Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
                [6 ]Division of Infection and Immunity, Faculty of Biomedical Life Sciences, and Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
                Weill Medical College of Cornell University, United States of America
                Author notes
                [¤]

                Current address: Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America

                Conceived and designed the experiments: GRM EL LSG BMDFF GD CJJ APW. Performed the experiments: GRM EL LSG BMDFF CJJ. Analyzed the data: GRM EL LSG BMDFF CKC GD CJJ APW. Contributed reagents/materials/analysis tools: GRM EL BMDFF JCAGW RWD GD CJJ APW. Wrote the paper: GRM EL LSG BMDFF GD CJJ APW.

                Article
                09-PLPA-RA-1663R2
                10.1371/journal.ppat.1000767
                2820534
                20169188
                6445055e-9f23-4904-8e5d-4e3b8dbd3a8d
                Mair et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 24 September 2009
                : 13 January 2010
                Page count
                Pages: 12
                Categories
                Research Article
                Cell Biology/Microbial Growth and Development
                Genetics and Genomics/Gene Expression
                Genetics and Genomics/Gene Function
                Infectious Diseases/Protozoal Infections
                Molecular Biology/mRNA Stability
                Molecular Biology/Post-Translational Regulation of Gene Expression
                Molecular Biology/RNA-Protein Interactions
                Molecular Biology/Translational Regulation

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article