8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Chiral selectors in CE: Recent development and applications (mid-2014 to mid-2016) : CE and CEC

      1 , 1 , 1
      ELECTROPHORESIS
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references149

          • Record: found
          • Abstract: found
          • Article: not found

          Chiral separations using the macrocyclic antibiotics: a review.

          The macrocyclic antibiotics have recently gained popularity as chiral selectors in CE, HPLC and TLC. The macrocyclic antibiotics used for chiral separations include the ansamycins, the glycopeptides, and the polypeptide antibiotic thiostrepton. Although not strictly considered macrocyclic antibiotics, the aminoglycosides are antibiotics that have been used for chiral separations in CE. More chiral analytes have been resolved using the glycopeptides than with the other macrocyclic antibiotics combined. The glycopeptides vancomycin, ristocetin A and teicoplanin have been used extensively as chiral selectors in CE, with ristocetin A appearing to be the most useful chiral selector followed by vancomycin and teicoplanin, respectively. The macrocyclic antibiotics have also been used as chiral bonded phases in HPLC, and HPLC stationary phases based on vancomycin, ristocetin A and teicoplanin have been commercialized. Ristocetin A seems to be the most useful glycopeptide HPLC bonded phase, but its greater expense can be a drawback. The macrocyclic antibiotics have been used with micelles to improve efficiency, provide unique selectivity, and extend the range of separations to neutral solutes. Changing the macrocyclic antibiotic used in CE or HPLC can significantly alter the enantioselectivity of the separations. In fact, the glycopeptide antibiotics are complementary to one another, where if a partial enantioresolution is obtained with one glycopeptide, there is a high probability that a baseline or better separation can be obtained with another.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of new HPLC chiral stationary phases based on native and derivatized cyclofructans.

            An unusual class of chiral selectors, cyclofructans, is introduced for the first time as bonded chiral stationary phases. Compared to native cyclofructans (CFs), which have rather limited capabilities as chiral selectors, aliphatic- and aromatic-functionalized CF6s possess unique and very different enantiomeric selectivities. Indeed, they are shown to separate a very broad range of racemic compounds. In particular, aliphatic-derivatized CF6s with a low substitution degree baseline separate all tested chiral primary amines. It appears that partial derivatization on the CF6 molecule disrupts the molecular internal hydrogen bonding, thereby making the core of the molecule more accessible. In contrast, highly aromatic-functionalized CF6 stationary phases lose most of the enantioselective capabilities toward primary amines, however they gain broad selectivity for most other types of analytes. This class of stationary phases also demonstrates high "loadability" and therefore has great potential for preparative separations. The variations in enantiomeric selectivity often can be correlated with distinct structural features of the selector. The separations occur predominantly in the presence of organic solvents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              On-line sample preconcentration in capillary electrophoresis. Fundamentals and applications.

              On-line preconcentration is one of the aspects of analytical method development using capillary electrophoretic techniques. The choice of the sample matrix alone can significantly alter both method sensitivity and separation efficiency. The recent trend to detect samples in narrower separation vessels also necessitates the need to improve detection sensitivity. The desire to detect very low levels of analytes using limited amounts of sample from biological specimens and the high separation efficiency obtainable using very large injections compared to classical small size injections also adds to this list. Indeed, one of the rich areas of research in the capillary electrophoresis field is on on-line sample preconcentration. More than 400 published research articles gathered from the http://www.webofscience.com from the year 2000 described a form of on-line preconcentration in capillary electrophoresis. This review provides a comprehensive table listing the applications of on-line preconcentration in capillary electrophoresis.
                Bookmark

                Author and article information

                Journal
                ELECTROPHORESIS
                ELECTROPHORESIS
                Wiley
                01730835
                March 2017
                March 2017
                February 01 2017
                : 38
                : 6
                : 786-819
                Affiliations
                [1 ]Department of Chemistry; University of Cyprus; Nicosia Cyprus
                Article
                10.1002/elps.201600322
                644d03f5-fa86-4fd3-ad90-26cbce51afea
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                http://onlinelibrary.wiley.com/termsAndConditions

                History

                Comments

                Comment on this article