87
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A new generation of JASPAR, the open-access repository for transcription factor binding site profiles

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          JASPAR is the most complete open-access collection of transcription factor binding site (TFBS) matrices. In this new release, JASPAR grows into a meta-database of collections of TFBS models derived by diverse approaches. We present JASPAR CORE—an expanded version of the original, non-redundant collection of annotated, high-quality matrix-based transcription factor binding profiles, JASPAR FAM—a collection of familial TFBS models and JASPAR phyloFACTS—a set of matrices computationally derived from statistically overrepresented, evolutionarily conserved regulatory region motifs from mammalian genomes. JASPAR phyloFACTS serves as a non-redundant extension to JASPAR CORE, enhancing the overall breadth of JASPAR for promoter sequence analysis. The new release of JASPAR is available at http://jaspar.genereg.net.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          TRANSFAC: transcriptional regulation, from patterns to profiles.

          The TRANSFAC database on eukaryotic transcriptional regulation, comprising data on transcription factors, their target genes and regulatory binding sites, has been extended and further developed, both in number of entries and in the scope and structure of the collected data. Structured fields for expression patterns have been introduced for transcription factors from human and mouse, using the CYTOMER database on anatomical structures and developmental stages. The functionality of Match, a tool for matrix-based search of transcription factor binding sites, has been enhanced. For instance, the program now comes along with a number of tissue-(or state-)specific profiles and new profiles can be created and modified with Match Profiler. The GENE table was extended and gained in importance, containing amongst others links to LocusLink, RefSeq and OMIM now. Further, (direct) links between factor and target gene on one hand and between gene and encoded factor on the other hand were introduced. The TRANSFAC public release is available at http://www.gene-regulation.com. For yeast an additional release including the latest data was made available separately as TRANSFAC Saccharomyces Module (TSM) at http://transfac.gbf.de. For CYTOMER free download versions are available at http://www.biobase.de:8080/index.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals.

            Comprehensive identification of all functional elements encoded in the human genome is a fundamental need in biomedical research. Here, we present a comparative analysis of the human, mouse, rat and dog genomes to create a systematic catalogue of common regulatory motifs in promoters and 3' untranslated regions (3' UTRs). The promoter analysis yields 174 candidate motifs, including most previously known transcription-factor binding sites and 105 new motifs. The 3'-UTR analysis yields 106 motifs likely to be involved in post-transcriptional regulation. Nearly one-half are associated with microRNAs (miRNAs), leading to the discovery of many new miRNA genes and their likely target genes. Our results suggest that previous estimates of the number of human miRNA genes were low, and that miRNAs regulate at least 20% of human genes. The overall results provide a systematic view of gene regulation in the human, which will be refined as additional mammalian genomes become available.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              JASPAR: an open-access database for eukaryotic transcription factor binding profiles.

              The analysis of regulatory regions in genome sequences is strongly based on the detection of potential transcription factor binding sites. The preferred models for representation of transcription factor binding specificity have been termed position-specific scoring matrices. JASPAR is an open-access database of annotated, high-quality, matrix-based transcription factor binding site profiles for multicellular eukaryotes. The profiles were derived exclusively from sets of nucleotide sequences experimentally demonstrated to bind transcription factors. The database is complemented by a web interface for browsing, searching and subset selection, an online sequence analysis utility and a suite of programming tools for genome-wide and comparative genomic analysis of regulatory regions. JASPAR is available at http://jaspar. cgb.ki.se.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                01 January 2006
                01 January 2006
                28 December 2005
                : 34
                : Database issue
                : D95-D97
                Affiliations
                Department for Molecular Biomedical Research (DMBR), VIB—Ghent University Technologiepark 927 B-9052 Ghent (Zwijnaarde), Belgium
                1Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
                2Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia Vancouver, BC, Canada
                3Computational Biology Unit, Bergen Center for Computational Science, University of Bergen Thormøhlensgate 55, N-5008 Bergen, Norway
                Author notes
                *To whom correspondence should be addressed. Tel: +47 55 84362; Fax: +47 555 84295; Email: Boris.Lenhard@ 123456bccs.uib.no

                The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors

                Article
                10.1093/nar/gkj115
                1347477
                16381983
                6455b972-1958-4666-b52e-5cd8e13f45ad
                © The Author 2006. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oxfordjournals.org

                History
                : 13 September 2005
                : 18 October 2005
                : 18 October 2005
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article