+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dipenyleneiodonium Induces Growth Inhibition of Toxoplasma gondii through ROS Induction in ARPE-19 Cells


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Based on the reactive oxygen species (ROS) regulatory properties of diphenyleneiodonium (DPI), we investigated the effects of DPI on host-infected T. gondii proliferation and determined specific concentration that inhibit the intracellular parasite growth but without severe toxic effect on human retinal pigment epithelial (ARPE-19) cells. As a result, it is observed that host superoxide, mitochondria superoxide and H 2O 2 levels can be increased by DPI, significantly, followed by suppression of T. gondii infection and proliferation. The involvement of ROS in anti-parasitic effect of DPI was confirmed by finding that DPI effect on T. gondii can be reversed by ROS scavengers, N-acetyl-L-cysteine and ascorbic acid. These results suggest that, in ARPE-19 cell, DPI can enhance host ROS generation to prevent T. gondii growth. Our study showed DPI is capable of suppressing T. gondii growth in host cells while minimizing the un-favorite side-effect to host cell. These results imply that DPI as a promising candidate material for novel drug development that can ameliorate toxoplasmosis based on ROS regulation.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function.

          The mitochondrion is a major source of reactive oxygen species (ROS). Superoxide (O(2)(*-)) is generated under specific bioenergetic conditions at several sites within the electron-transport system; most is converted to H(2)O(2) inside and outside the mitochondrial matrix by superoxide dismutases. H(2)O(2) is a major chemical messenger that, in low amounts and with its products, physiologically modulates cell function. The redox state and ROS scavengers largely control the emission (generation scavenging) of O(2)(*-). Cell ischemia, hypoxia, or toxins can result in excess O(2)(*-) production when the redox state is altered and the ROS scavenger systems are overwhelmed. Too much H(2)O(2) can combine with Fe(2+) complexes to form reactive ferryl species (e.g., Fe(IV) = O(*)). In the presence of nitric oxide (NO(*)), O(2)(*-) forms the reactant peroxynitrite (ONOO(-)), and ONOOH-induced nitrosylation of proteins, DNA, and lipids can modify their structure and function. An initial increase in ROS can cause an even greater increase in ROS and allow excess mitochondrial Ca(2+) entry, both of which are factors that induce cell apoptosis and necrosis. Approaches to reduce excess O(2)(*-) emission include selectively boosting the antioxidant capacity, uncoupling of oxidative phosphorylation to reduce generation of O(2)(*-) by inducing proton leak, and reversibly inhibiting electron transport. Mitochondrial cation channels and exchangers function to maintain matrix homeostasis and likely play a role in modulating mitochondrial function, in part by regulating O(2)(*-) generation. Cell-signaling pathways induced physiologically by ROS include effects on thiol groups and disulfide linkages to modify posttranslationally protein structure to activate/inactivate specific kinase/phosphatase pathways. Hypoxia-inducible factors that stimulate a cascade of gene transcription may be mediated physiologically by ROS. Our knowledge of the role played by ROS and their scavenging systems in modulation of cell function and cell death has grown exponentially over the past few years, but we are still limited in how to apply this knowledge to develop its full therapeutic potential.
            • Record: found
            • Abstract: found
            • Article: not found

            Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production.

            Diphenyleneiodonium (DPI) has frequently been used to inhibit reactive oxygen species (ROS) production mediated by flavoenzymes, particularly NAD(P)H oxidase. This study was undertaken to examine if DPI could also inhibit production of superoxide and H2O2 by mitochondria, the major source of cellular ROS. Detection of mitochondrial superoxide by lucigenin-derived chemiluminescence (CL) with unstimulated monocytes/macrophages showed that DPI at concentrations that inhibit NAD(P)H oxidase markedly diminished the production of superoxide by mitochondrial respiration. Similarly, the extracellular H2O2 derived from mitochondrial respiration as detected by luminol-derived CL in the presence of horseradish peroxidase was also greatly reduced by DPI. DPI was as potent as rotenone in inhibiting the production of superoxide and H2O2 by mitochondrial respiration. With substrate-supported isolated mitochondria, DPI was shown to reduce mitochondrial superoxide production probably through inhibiting NADH-ubiquinone oxidoreductase (complex I). Copyright 1998 Academic Press.
              • Record: found
              • Abstract: found
              • Article: not found

              Diphenyleneiodonium inhibits the cell redox metabolism and induces oxidative stress.

              Diphenyleneiodonium (DPI) and the structurally related compound diphenyliodonium (DIP) are widely used as inhibitors of flavoenzymes, particularly NADPH oxidase. Here we report further evidence that DPI and DIP are not specific flavin binders. A 3-h incubation of N11 glial cells with DPI significantly inhibited in a dose-dependent way both the pentose phosphate pathway and the tricarboxylic acid cycle. In parallel, we observed a dose-dependent increase of reactive oxygen species generation and lipoperoxidation and increased leakage of lactate dehydrogenase activity in the extracellular medium. The glutathione/glutathione disulfide ratio decreased, whereas the efflux of glutathione out of the cells increased. This suggests that DPI causes an augmented oxidative stress and exerts a cytotoxic effect in N11 cells. Indeed, the cells were protected from these events when loaded with glutathione. Similar results were observed using DIP instead of DPI and also in other cell types. We suggest that the DPI-elicited inhibition of the pentose phosphate pathway and tricarboxylic acid cycle may be mediated by the blockade of several NAD(P)-dependent enzymes, such as glucose 6-phosphate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase, and lactate dehydrogenase. In light of these results, we think that some effects of DPI or DIP in in vitro and in vivo experimental models should be interpreted with caution.

                Author and article information

                Korean J Parasitol
                Korean J. Parasitol
                The Korean Journal of Parasitology
                The Korean Society for Parasitology and Tropical Medicine
                April 2019
                30 April 2019
                : 57
                : 2
                : 83-92
                [1 ]Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 34134, Korea
                [2 ]Department of Medical Science & Medical Education, Chungnam National University, School of Medicine, Daejeon 34134, Korea
                [3 ]Institute of Immunology, Taishan Medical College, Tai’an 271-000, Shandong, China
                Author notes
                [* ]Corresponding authors ( yhalee@ 123456cnu.ac.kr ; gcha@ 123456cnu.ac.kr )

                These authors contributed equally to this work.

                Copyright © 2019 by The Korean Society for Parasitology and Tropical Medicine

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                : 30 October 2018
                : 5 March 2019
                : 14 March 2019
                Original Article

                t. gondii,reactive oxygen species,diphenyleneiodonium,n-acetyl-l-cysteine,arpe-19 cell


                Comment on this article