9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Changes in cytogenetics and molecular genetics in acute myeloid leukemia from childhood to adult age groups : Genetics in AML Covering All Age Groups

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To obtain better insight into the biology of acute myeloid leukemia (AML) in various age groups, this study focused on the genetic changes occurring during a lifetime.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel.

          Despite major improvements in outcome over the past decades, acute myeloid leukemia (AML) remains a life-threatening malignancy in children, with current survival rates of ∼70%. State-of-the-art recommendations in adult AML have recently been published in this journal by Döhner et al. The primary goal of an international expert panel of the International BFM Study Group AML Committee was to set standards for the management, diagnosis, response assessment, and treatment in childhood AML. This paper aims to discuss differences between childhood and adult AML, and to highlight recommendations that are specific to children. The particular relevance of new diagnostic and prognostic molecular markers in pediatric AML is presented. The general management of pediatric AML, the management of specific pediatric AML cohorts (such as infants) or subtypes of the disease occurring in children (such as Down syndrome related AML), as well as new therapeutic approaches, and the role of supportive care are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML).

            Mutations of the nucleophosmin (NPM1) gene have recently been described in patients with acute myeloid leukemia (AML). To clarify the prevalence as well as the clinical impact of this mutation, we investigated 1485 patients with AML for NPM1 exon 12 mutations using fragment analysis. A 4 bp insert was detected in 408 of 1485 patients (27.5%). Sequence analysis revealed known mutations (type A, B, and D) as well as 13 novel alterations in 229 analyzed cases. NPM1 mutations were most prevalent in patients with normal karyotype (NK) (324 of 709; 45.7%) compared with 58 of 686 with karyotype abnormalities (8.5%; P < .001) and were significantly associated with several clinical parameters (high bone marrow [BM] blasts, high white blood cell [WBC] and platelet counts, female sex). NPM1 alterations were associated with FLT3-ITD mutations, even if restricted to patients with NK (NPM1-mut/FLT3-ITD: 43.8%; versus NPM1-wt/FLT3-ITD: 19.9%; P < .001). The analysis of the clinical impact in 4 groups (NPM1 and FLT3-ITD single mutants, double mutants, and wild-type [wt] for both) revealed that patients having only an NPM1 mutation had a significantly better overall and disease-free survival and a lower cumulative incidence of relapse. In conclusion, NPM1 mutations represent a common genetic abnormality in adult AML. If not associated with FLT3-ITD mutations, mutant NPM1 appears to identify patients with improved response toward treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial.

              Acute myeloid leukemia (AML) in older adults carries a poor prognosis, and the optimum treatment remains to be determined. In younger patients, treatment stratification is frequently based upon diagnostic karyotype, which was the most important prognostic factor in the UK Medical Research Council (MRC) AML10 trial. Considered here is whether karyotype is also predictive in older adults; this is done by studying 1065 cases from MRC AML11 (median age, 66 years). Three prognostic groups were distinguished on the basis of response to induction therapy and overall survival (OS). Those with t(15;17), t(8;21), or inv(16) composed the favorable risk group. Overall, these abnormalities predicted a superior complete remission (CR) rate (72%), reflecting relatively low levels of resistant disease (RD) (8%), and lower relapse risk (RR) (56%) associated with superior OS (34% at 5 years). Normal karyotype (CR, 63%; RD, 17%; RR, 78%; OS, 15%) and other noncomplex abnormalities (CR, 53%; RD, 32%; RR, 85%; OS, 10%) composed the intermediate group; while complex karyotype predicted an extremely poor prognosis (CR, 26%; RD, 56%; RR, 91%; OS, 2%). Combining MRC AML10 and AML11 (n = 2677) revealed that the most favorable changes were rarer in older patients (younger than 55 years, 24%; 55 years or older, 7%), while complex abnormalities were more common (6% vs 13%). This study suggests that hierarchical cytogenetic classification identifies biologically distinct subsets of AML that are represented in all age groups. Furthermore, it highlights the importance of karyotype as a critical independent determinant of outcome in older patients with AML, providing a potential framework for stratified treatment approaches.
                Bookmark

                Author and article information

                Journal
                Cancer
                Cancer
                Wiley-Blackwell
                0008543X
                December 15 2016
                December 15 2016
                : 122
                : 24
                : 3821-3830
                Article
                10.1002/cncr.30220
                27529519
                6464179e-81fc-430a-b1af-26909dd7bfaa
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article