80
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Novel Immunogenic Proteins from Mycoplasma bovis and Establishment of an Indirect ELISA Based on Recombinant E1 Beta Subunit of the Pyruvate Dehydrogenase Complex

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pathogen Mycoplasma bovis ( M. bovis) is a major cause of respiratory disease, mastitis, and arthritis in cattle. Screening the key immunogenic proteins and updating rapid diagnostic techniques are necessary to the prevention and control of M. bovis infection. In this study, 19 highly immunogenic proteins from M. bovis strain PD were identified using 2-dimensional gel electrophoresis, immunoblotting and MALDI-TOF/TOF MS. Of these 19 proteins, pyruvate dehydrogenase E1 component beta subunit (PDHB) showed excellent immune reactivity and repeatability. PDHB was found to be conserved in different M. bovis isolates, as indicated by Western blot analysis. On the basis of these results, a rPDHB-based indirect ELISA (iELISA) was established for the detection of serum antibodies using prokaryotically expressed recombinant PDHB protein as the coating antigen. The specificity analysis result showed that rPDHB-based iELISA did not react with other pathogens assessed in our study except M. agalactiae (which infects sheep and goats). Moreover, 358 serum samples from several disease-affected cattle feedlots were tested using this iELISA system and a commercial kit, which gave positive rates of 50.8% and 39.9%, respectively. The estimated Kappa agreement coefficient between the two methods was 0.783. Notably, 39 positive serum samples that had been missed by the commercial kit were all found to be positive by Western blot analysis. The detection rate of rPDHB-based iELISA was significantly higher than that of the commercial kit at a serum dilution ratio of 1∶5120 to 1∶10,240 ( P<0.05). Taken together, these results provide important information regarding the novel immunogenic proteins of M. bovis. The established rPDHB-based iELISA may be suitable for use as a new method of antibody detection in M. bovis.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Current two-dimensional electrophoresis technology for proteomics.

          Two-dimensional gel electrophoresis (2-DE) with immobilized pH gradients (IPGs) combined with protein identification by mass spectrometry (MS) is currently the workhorse for proteomics. In spite of promising alternative or complementary technologies (e.g. multidimensional protein identification technology, stable isotope labelling, protein or antibody arrays) that have emerged recently, 2-DE is currently the only technique that can be routinely applied for parallel quantitative expression profiling of large sets of complex protein mixtures such as whole cell lysates. 2-DE enables the separation of complex mixtures of proteins according to isoelectric point (pI), molecular mass (Mr), solubility, and relative abundance. Furthermore, it delivers a map of intact proteins, which reflects changes in protein expression level, isoforms or post-translational modifications. This is in contrast to liquid chromatography-tandem mass spectrometry based methods, which perform analysis on peptides, where Mr and pI information is lost, and where stable isotope labelling is required for quantitative analysis. Today's 2-DE technology with IPGs (Görg et al., Electrophoresis 2000, 21, 1037-1053), has overcome the former limitations of carrier ampholyte based 2-DE (O'Farrell, J. Biol. Chem. 1975, 250, 4007-4021) with respect to reproducibility, handling, resolution, and separation of very acidic and/or basic proteins. The development of IPGs between pH 2.5-12 has enabled the analysis of very alkaline proteins and the construction of the corresponding databases. Narrow-overlapping IPGs provide increased resolution (delta pI = 0.001) and, in combination with prefractionation methods, the detection of low abundance proteins. Depending on the gel size and pH gradient used, 2-DE can resolve more than 5000 proteins simultaneously (approximately 2000 proteins routinely), and detect and quantify < 1 ng of protein per spot. In this article we describe the current 2-DE/MS workflow including the following topics: sample preparation, protein solubilization, and prefractionation; protein separation by 2-DE with IPGs; protein detection and quantitation; computer assisted analysis of 2-DE patterns; protein identification and characterization by MS; two-dimensional protein databases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mycoplasma bovis: disease, diagnosis, and control.

            Mycoplasma bovis is a major, but often overlooked, pathogen causing respiratory disease, mastitis, and arthritis in cattle. It is found worldwide and has spread into new areas, including Ireland and parts of South America, in the last decade. In Europe, it is responsible for at least a quarter to a third of all calf pneumonia although this may be an underestimate as few laboratories regularly monitor for mycoplasmas. Like all mollicutes, M. bovis is inherently refractory to certain groups of antibiotics because it does not possess a cell wall; furthermore evidence is accumulating that strains of M. bovis are becoming resistant to antibiotics, including tetracycline, tilmicosin and spectinomycin, traditionally used for their control. No vaccines are presently available for the control of M. bovis infections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proteogenomic mapping as a complementary method to perform genome annotation.

              The accelerated rate of genomic sequencing has led to an abundance of completely sequenced genomes. Annotation of the open reading frames (ORFs) (i.e., gene prediction) in these genomes is an important task and is most often performed computationally based on features in the nucleic acid sequence. Using recent advances in proteomics, we set out to predict the set of ORFs for an organism based principally on expressed protein-based evidence. Using a novel search strategy, we mapped peptides detected in a whole-cell lysate of Mycoplasma pneumoniae onto a genomic scaffold and extended these "hits" into ORFs bound by traditional genetic signals to generate a "proteogenomic map". We were able to generate an ORF model for M. pneumoniae strain FH using proteomic data with a high correlation to models based on sequence features. Ultimately, we detected over 81% of the genomically predicted ORFs in M. pneumoniae strain M129 (the originally sequenced strain). We were also able to detect several new ORFs not originally predicted by genomic methods, various N-terminal extensions, and some evidence that would suggest that certain predicted ORFs are bogus. Some of these differences may be a result of the strain analyzed but demonstrate the robustness of protein analysis across closely related genomes. This technique is a cost-effective means to add value to genome annotation, and a prerequisite for proteome quantitation and in vivo interaction measures.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                10 February 2014
                : 9
                : 2
                : e88328
                Affiliations
                [1]Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, P. R. China
                INIAV, I.P.- National Institute of Agriculture and Veterinary Research, Portugal
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ZHS PF KW WXW. Performed the experiments: ZHS PF HYZ YWZ JX FJ XL WX. Analyzed the data: ZHS PF KW HYZ WXW. Contributed reagents/materials/analysis tools: WXW. Wrote the paper: ZHS PF KW WXW.

                Article
                PONE-D-13-36581
                10.1371/journal.pone.0088328
                3919759
                24520369
                646809b7-1e87-437d-b0c2-e147a9142dd8
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 August 2013
                : 7 January 2014
                Page count
                Pages: 10
                Funding
                This work was supported by Agricultural Finance Program, Ministry of Agriculture of China and Program for New Century Excellent Talents in University of Ministry of Education of China. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Enzymes
                Immunology
                Immunologic Techniques
                Immunoassays
                Immune Response
                Microbiology
                Bacterial Pathogens
                Proteomics
                Veterinary Science
                Veterinary Diseases
                Veterinary Bacteriology
                Veterinary Epidemiology
                Veterinary Medicine
                Veterinary Microbiology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article