6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance.

      Physiologia Plantarum
      Adaptation, Physiological, physiology, Calcium, metabolism, Homeostasis, Ion Transport, Models, Biological, Plants, Potassium, Potassium Channels, Potassium-Hydrogen Antiporters, Stress, Physiological

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K(+) uptake, efflux and intracellular and long-distance relocation, mediated by a large number of K(+) -selective and non-selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K(+) content may be considered as one of the 'master switches' enabling plant transition from the normal metabolism to 'hibernated state' during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K(+) homeostasis and provoke a feedback control on K(+) channels and transporters expression and post-translational regulation of their activity, optimizing K(+) absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K(+) channels and transporters by membrane voltage, intracellular Ca(2+) , reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant-adaptive responses to hostile environments. © 2014 Scandinavian Plant Physiology Society.

          Related collections

          Author and article information

          Comments

          Comment on this article