47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activation of Endoplasmic Reticulum Stress by Hyperglycemia Is Essential for Müller Cell–Derived Inflammatory Cytokine Production in Diabetes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inflammation plays an important role in diabetes-induced retinal vascular leakage. The purpose of this study is to examine the role of endoplasmic reticulum (ER) stress and the signaling pathway of ER stress–induced activating transcription factor 4 (ATF4) in the regulation of Müller cell–derived inflammatory mediators in diabetic retinopathy. In diabetic animals, elevated ER stress markers, ATF4, and vascular endothelial growth factor (VEGF) expression were partially localized to Müller cells in the retina. In cultured Müller cells, high glucose induced a time-dependent increase of ER stress, ATF4 expression, and inflammatory factor production. Inducing ER stress or overexpressing ATF4 resulted in elevated intracellular adhesion molecule 1 and VEGF proteins in Müller cells. In contrast, alleviation of ER stress or blockade of ATF4 activity attenuated inflammatory gene expression induced by high glucose or hypoxia. Furthermore, we found that ATF4 regulated the c-Jun NH 2-terminal kinase pathway resulting in VEGF upregulation. ATF4 was also required for ER stress–induced and hypoxia-inducible factor-1α activation. Finally, we showed that administration of chemical chaperone 4-phenylbutyrate or genetic inhibition of ATF4 successfully attenuated retinal VEGF expression and reduced vascular leakage in mice with STZ-induced diabetes. Taken together, our data indicate that ER stress and ATF4 play a critical role in retinal inflammatory signaling and Müller cell–derived inflammatory cytokine production in diabetes.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          A central role for inflammation in the pathogenesis of diabetic retinopathy.

          Diabetic retinopathy is a leading cause of adult vision loss and blindness. Much of the retinal damage that characterizes the disease results from retinal vascular leakage and nonperfusion. Diabetic retinal vascular leakage, capillary nonperfusion, and endothelial cell damage are temporary and spatially associated with retinal leukocyte stasis in early experimental diabetes. Retinal leukostasis increases within days of developing diabetes and correlates with the increased expression of retinal intercellular adhesion molecule-1 (ICAM-1) and CD18. Mice deficient in the genes encoding for the leukocyte adhesion molecules CD18 and ICAM-1 were studied in two models of diabetic retinopathy with respect to the long-term development of retinal vascular lesions. CD18-/- and ICAM-1-/- mice demonstrate significantly fewer adherent leukocytes in the retinal vasculature at 11 and 15 months after induction of diabetes with STZ. This condition is associated with fewer damaged endothelial cells and lesser vascular leakage. Galactosemia of up to 24 months causes pericyte and endothelial cell loss and formation of acellular capillaries. These changes are significantly reduced in CD18- and ICAM-1-deficient mice. Basement membrane thickening of the retinal vessels is increased in long-term galactosemic animals independent of the genetic strain. Here we show that chronic, low-grade subclinical inflammation is responsible for many of the signature vascular lesions of diabetic retinopathy. These data highlight the central and causal role of adherent leukocytes in the pathogenesis of diabetic retinopathy. They also underscore the potential utility of anti-inflammatory treatment in diabetic retinopathy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Contributions of Inflammatory Processes to the Development of the Early Stages of Diabetic Retinopathy

            Diabetes causes metabolic and physiologic abnormalities in the retina, and these changes suggest a role for inflammation in the development of diabetic retinopathy. These changes include upregulation of iNOS, COX-2, ICAM-1, caspase 1, VEGF, and NF- κ B, increased production of nitric oxide, prostaglandin E2, IL-1 β , and cytokines, as well as increased permeability and leukostasis. Using selective pharmacologic inhibitors or genetically modified animals, an increasing number of therapeutic approaches have been identified that significantly inhibit development of at least the early stages of diabetic retinopathy, especially occlusion and degeneration of retinal capillaries. A common feature of a number of these therapies is that they inhibit production of inflammatory mediators. The concept that localized inflammatory processes play a role in the development of diabetic retinopathy is relatively new, but evidence that supports the hypothesis is accumulating rapidly. This new hypothesis offers new insight into the pathogenesis of diabetic retinopathy, and offers novel targets to inhibit the ocular disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Müller Cell-Derived VEGF Is Essential for Diabetes-Induced Retinal Inflammation and Vascular Leakage

              OBJECTIVE Vascular endothelial growth factor (VEGF-A or VEGF) is a major pathogenic factor and therapeutic target for diabetic retinopathy (DR). Since VEGF has been proposed as a survival factor for retinal neurons, defining the cellular origin of pathogenic VEGF is necessary for the effectiveness and safety of long-term anti-VEGF therapies for DR. To determine the significance of Müller cell-derived VEGF in DR, we disrupted VEGF in Müller cells with an inducible Cre/lox system and examined diabetes-induced retinal inflammation and vascular leakage in these conditional VEGF knockout (KO) mice. RESEARCH DESIGN AND METHODS Leukostasis was determined by counting the number of fluorescently labeled leukocytes inside retinal vasculature. Expression of biomarkers for retinal inflammation was assessed by immunoblotting of TNF-α, ICAM-1, and NF-κB. Vascular leakage was measured by immunoblotting of retinal albumin and fluorescent microscopic analysis of extravascular albumin. Diabetes-induced vascular alterations were examined by immunoblotting and immunohistochemistry for tight junctions, and by trypsin digestion assays for acellular capillaries. Retinal integrity was analyzed with morphologic and morphometric analyses. RESULTS Diabetic conditional VEGF KO mice exhibited significantly reduced leukostasis, expression of inflammatory biomarkers, depletion of tight junction proteins, numbers of acellular capillaries, and vascular leakage compared to diabetic control mice. CONCLUSIONS Müller cell-derived VEGF plays an essential and causative role in retinal inflammation, vascular lesions, and vascular leakage in DR. Therefore, Müller cells are a primary cellular target for proinflammatory signals that mediates retinal inflammation and vascular leakage in DR.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                February 2012
                17 January 2012
                : 61
                : 2
                : 492-504
                Affiliations
                [1] 1Department of Medicine, Endocrinology, and Diabetes, Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
                [2] 2State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
                [3] 3Department of Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
                [4] 4Department of Neurology and Neuroscience, Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, New York
                [5] 5Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
                Author notes
                Corresponding author: Sarah X. Zhang, xin-zhang@ 123456ouhsc.edu .

                Y.Z., J.L., and Y.C. contributed equally to this study.

                Article
                0315
                10.2337/db11-0315
                3266398
                22228718
                64779e16-86fe-4fb1-acf2-dbc5059ba152
                © 2012 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 08 March 2011
                : 03 November 2011
                Categories
                Complications

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article