45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Skin pigmentation, sun exposure and vitamin D levels in children of the Avon Longitudinal Study of Parents and Children

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          It has been hypothesised that light skin pigmentation has arisen to ensure adequate levels of vitamin D as human populations moved out of Africa and into higher latitudes. Vitamin D, which is primarily obtained through exposure to sunlight (specifically ultraviolet radiation B (UVR-B)), has been inversely associated with several complex diseases. Greater sun exposure, on the other hand, is a well-known cause of skin cancer. The potential of UVR to be beneficial for some health outcomes but detrimental for others has prompted a public health debate on how to balance the positive and negative consequences of sun exposure. In this study we aimed to determine the validity of the evolutionary hypothesis linking lighter skin with higher vitamin D concentrations in a European population. Additionally, we aimed to examine the influence of pigmentation on personal behaviour towards sunlight exposure and the effects of this behaviour on vitamin D.

          Methods

          We combined genetic variants strongly associated with skin colour, tanning or freckling to create genetic scores for each of these phenotypes. We examined the association of the scores with pigmentary traits, sun exposure and serum 25-hydroxyvitamin D (25(OH)D) levels among children of the Avon Longitudinal Study of Parents and Children (ALSPAC, N = 661 to 5649).

          Results

          We found that fairer-skinned children, i.e. those with higher pigmentation score values, had higher levels of 25(OH)D (0.6 nmol/l; 95% CI 0.2, 1.0; per unit increase in skin colour score; N = 5649). These children also used more protection against the damaging effects of UVR.

          Conclusions

          In this population taking protective measures against sunburn and skin cancer does not seem to remove the positive effect that having a less pigmented skin has on vitamin D production. Our findings require further replication as skin pigmentation showed only a small effect on circulating 25(OH)D.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The evolution of human skin coloration.

          Skin color is one of the most conspicuous ways in which humans vary and has been widely used to define human races. Here we present new evidence indicating that variations in skin color are adaptive, and are related to the regulation of ultraviolet (UV) radiation penetration in the integument and its direct and indirect effects on fitness. Using remotely sensed data on UV radiation levels, hypotheses concerning the distribution of the skin colors of indigenous peoples relative to UV levels were tested quantitatively in this study for the first time. The major results of this study are: (1) skin reflectance is strongly correlated with absolute latitude and UV radiation levels. The highest correlation between skin reflectance and UV levels was observed at 545 nm, near the absorption maximum for oxyhemoglobin, suggesting that the main role of melanin pigmentation in humans is regulation of the effects of UV radiation on the contents of cutaneous blood vessels located in the dermis. (2) Predicted skin reflectances deviated little from observed values. (3) In all populations for which skin reflectance data were available for males and females, females were found to be lighter skinned than males. (4) The clinal gradation of skin coloration observed among indigenous peoples is correlated with UV radiation levels and represents a compromise solution to the conflicting physiological requirements of photoprotection and vitamin D synthesis. The earliest members of the hominid lineage probably had a mostly unpigmented or lightly pigmented integument covered with dark black hair, similar to that of the modern chimpanzee. The evolution of a naked, darkly pigmented integument occurred early in the evolution of the genus Homo. A dark epidermis protected sweat glands from UV-induced injury, thus insuring the integrity of somatic thermoregulation. Of greater significance to individual reproductive success was that highly melanized skin protected against UV-induced photolysis of folate (Branda & Eaton, 1978, Science201, 625-626; Jablonski, 1992, Proc. Australas. Soc. Hum. Biol.5, 455-462, 1999, Med. Hypotheses52, 581-582), a metabolite essential for normal development of the embryonic neural tube (Bower & Stanley, 1989, The Medical Journal of Australia150, 613-619; Medical Research Council Vitamin Research Group, 1991, The Lancet338, 31-37) and spermatogenesis (Cosentino et al., 1990, Proc. Natn. Acad. Sci. U.S.A.87, 1431-1435; Mathur et al., 1977, Fertility Sterility28, 1356-1360).As hominids migrated outside of the tropics, varying degrees of depigmentation evolved in order to permit UVB-induced synthesis of previtamin D(3). The lighter color of female skin may be required to permit synthesis of the relatively higher amounts of vitamin D(3)necessary during pregnancy and lactation. Skin coloration in humans is adaptive and labile. Skin pigmentation levels have changed more than once in human evolution. Because of this, skin coloration is of no value in determining phylogenetic relationships among modern human groups. Copyright 2000 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human skin pigmentation: melanocytes modulate skin color in response to stress.

            All organisms, from simple invertebrates to complex human beings, exist in different colors and patterns, which arise from the unique distribution of pigments throughout the body. Pigmentation is highly heritable, being regulated by genetic, environmental, and endocrine factors that modulate the amount, type, and distribution of melanins in the skin, hair, and eyes. In addition to its roles in camouflage, heat regulation, and cosmetic variation, melanin protects against UV radiation and thus is an important defense system in human skin against harmful factors. Being the largest organ of the body that is always under the influence of internal and external factors, the skin often reacts to those agents by modifying the constitutive pigmentation pattern. The focus of this review is to provide an updated overview of important physiological and biological factors that increase pigmentation and the mechanisms by which they do so. We consider endocrine factors that induce temporary (e.g., during pregnancy) or permanent (e.g., during aging) changes in skin color, environmental factors (e.g., UV), certain drugs, and chemical compounds, etc. Understanding the mechanisms by which different factors and compounds induce melanogenesis is of great interest pharmaceutically (as therapy for pigmentary diseases) and cosmeceutically (e.g., to design tanning products with potential to reduce skin cancer risk).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic evidence for the convergent evolution of light skin in Europeans and East Asians.

              Human skin pigmentation shows a strong positive correlation with ultraviolet radiation intensity, suggesting that variation in skin color is, at least partially, due to adaptation via natural selection. We investigated the evolution of pigmentation variation by testing for the presence of positive directional selection in 6 pigmentation genes using an empirical F(ST) approach, through an examination of global diversity patterns of these genes in the Centre d'Etude du Polymorphisme Humain (CEPH)-Diversity Panel, and by exploring signatures of selection in data from the International HapMap project. Additionally, we demonstrated a role for MATP in determining normal skin pigmentation variation using admixture mapping methods. Taken together (with the results of previous admixture mapping studies), these results point to the importance of several genes in shaping the pigmentation phenotype and a complex evolutionary history involving strong selection. Polymorphisms in 2 genes, ASIP and OCA2, may play a shared role in shaping light and dark pigmentation across the globe, whereas SLC24A5, MATP, and TYR have a predominant role in the evolution of light skin in Europeans but not in East Asians. These findings support a case for the recent convergent evolution of a lighter pigmentation phenotype in Europeans and East Asians.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Public Health
                BMC Public Health
                BMC Public Health
                BioMed Central
                1471-2458
                2014
                12 June 2014
                : 14
                : 597
                Affiliations
                [1 ]School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
                [2 ]School of Oral and Dental Sciences, University of Bristol, Bristol, UK
                [3 ]MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, UK
                Article
                1471-2458-14-597
                10.1186/1471-2458-14-597
                4067096
                24924479
                648a6ec0-d886-4a2a-b175-a0b95942023a
                Copyright © 2014 Bonilla et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 September 2013
                : 27 May 2014
                Categories
                Research Article

                Public health
                pigmentation,sun exposure,vitamin d,alspac,genetic scores
                Public health
                pigmentation, sun exposure, vitamin d, alspac, genetic scores

                Comments

                Comment on this article